You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
344 lines
11 KiB
344 lines
11 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import paddle |
|
from paddle import ParamAttr |
|
import paddle.nn as nn |
|
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout |
|
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D |
|
from paddle.nn.initializer import Uniform |
|
|
|
import math |
|
|
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url |
|
|
|
MODEL_URLS = { |
|
"DenseNet121": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams", |
|
"DenseNet161": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams", |
|
"DenseNet169": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams", |
|
"DenseNet201": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams", |
|
"DenseNet264": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams", |
|
} |
|
|
|
__all__ = list(MODEL_URLS.keys()) |
|
|
|
|
|
class BNACConvLayer(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
num_filters, |
|
filter_size, |
|
stride=1, |
|
pad=0, |
|
groups=1, |
|
act="relu", |
|
name=None): |
|
super(BNACConvLayer, self).__init__() |
|
|
|
self._batch_norm = BatchNorm( |
|
num_channels, |
|
act=act, |
|
param_attr=ParamAttr(name=name + '_bn_scale'), |
|
bias_attr=ParamAttr(name + '_bn_offset'), |
|
moving_mean_name=name + '_bn_mean', |
|
moving_variance_name=name + '_bn_variance') |
|
|
|
self._conv = Conv2D( |
|
in_channels=num_channels, |
|
out_channels=num_filters, |
|
kernel_size=filter_size, |
|
stride=stride, |
|
padding=pad, |
|
groups=groups, |
|
weight_attr=ParamAttr(name=name + "_weights"), |
|
bias_attr=False) |
|
|
|
def forward(self, input): |
|
y = self._batch_norm(input) |
|
y = self._conv(y) |
|
return y |
|
|
|
|
|
class DenseLayer(nn.Layer): |
|
def __init__(self, num_channels, growth_rate, bn_size, dropout, name=None): |
|
super(DenseLayer, self).__init__() |
|
self.dropout = dropout |
|
|
|
self.bn_ac_func1 = BNACConvLayer( |
|
num_channels=num_channels, |
|
num_filters=bn_size * growth_rate, |
|
filter_size=1, |
|
pad=0, |
|
stride=1, |
|
name=name + "_x1") |
|
|
|
self.bn_ac_func2 = BNACConvLayer( |
|
num_channels=bn_size * growth_rate, |
|
num_filters=growth_rate, |
|
filter_size=3, |
|
pad=1, |
|
stride=1, |
|
name=name + "_x2") |
|
|
|
if dropout: |
|
self.dropout_func = Dropout(p=dropout, mode="downscale_in_infer") |
|
|
|
def forward(self, input): |
|
conv = self.bn_ac_func1(input) |
|
conv = self.bn_ac_func2(conv) |
|
if self.dropout: |
|
conv = self.dropout_func(conv) |
|
conv = paddle.concat([input, conv], axis=1) |
|
return conv |
|
|
|
|
|
class DenseBlock(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
num_layers, |
|
bn_size, |
|
growth_rate, |
|
dropout, |
|
name=None): |
|
super(DenseBlock, self).__init__() |
|
self.dropout = dropout |
|
|
|
self.dense_layer_func = [] |
|
|
|
pre_channel = num_channels |
|
for layer in range(num_layers): |
|
self.dense_layer_func.append( |
|
self.add_sublayer( |
|
"{}_{}".format(name, layer + 1), |
|
DenseLayer( |
|
num_channels=pre_channel, |
|
growth_rate=growth_rate, |
|
bn_size=bn_size, |
|
dropout=dropout, |
|
name=name + '_' + str(layer + 1)))) |
|
pre_channel = pre_channel + growth_rate |
|
|
|
def forward(self, input): |
|
conv = input |
|
for func in self.dense_layer_func: |
|
conv = func(conv) |
|
return conv |
|
|
|
|
|
class TransitionLayer(nn.Layer): |
|
def __init__(self, num_channels, num_output_features, name=None): |
|
super(TransitionLayer, self).__init__() |
|
|
|
self.conv_ac_func = BNACConvLayer( |
|
num_channels=num_channels, |
|
num_filters=num_output_features, |
|
filter_size=1, |
|
pad=0, |
|
stride=1, |
|
name=name) |
|
|
|
self.pool2d_avg = AvgPool2D(kernel_size=2, stride=2, padding=0) |
|
|
|
def forward(self, input): |
|
y = self.conv_ac_func(input) |
|
y = self.pool2d_avg(y) |
|
return y |
|
|
|
|
|
class ConvBNLayer(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
num_filters, |
|
filter_size, |
|
stride=1, |
|
pad=0, |
|
groups=1, |
|
act="relu", |
|
name=None): |
|
super(ConvBNLayer, self).__init__() |
|
|
|
self._conv = Conv2D( |
|
in_channels=num_channels, |
|
out_channels=num_filters, |
|
kernel_size=filter_size, |
|
stride=stride, |
|
padding=pad, |
|
groups=groups, |
|
weight_attr=ParamAttr(name=name + "_weights"), |
|
bias_attr=False) |
|
self._batch_norm = BatchNorm( |
|
num_filters, |
|
act=act, |
|
param_attr=ParamAttr(name=name + '_bn_scale'), |
|
bias_attr=ParamAttr(name + '_bn_offset'), |
|
moving_mean_name=name + '_bn_mean', |
|
moving_variance_name=name + '_bn_variance') |
|
|
|
def forward(self, input): |
|
y = self._conv(input) |
|
y = self._batch_norm(y) |
|
return y |
|
|
|
|
|
class DenseNet(nn.Layer): |
|
def __init__(self, layers=60, bn_size=4, dropout=0, class_num=1000): |
|
super(DenseNet, self).__init__() |
|
|
|
supported_layers = [121, 161, 169, 201, 264] |
|
assert layers in supported_layers, \ |
|
"supported layers are {} but input layer is {}".format( |
|
supported_layers, layers) |
|
densenet_spec = { |
|
121: (64, 32, [6, 12, 24, 16]), |
|
161: (96, 48, [6, 12, 36, 24]), |
|
169: (64, 32, [6, 12, 32, 32]), |
|
201: (64, 32, [6, 12, 48, 32]), |
|
264: (64, 32, [6, 12, 64, 48]) |
|
} |
|
num_init_features, growth_rate, block_config = densenet_spec[layers] |
|
|
|
self.conv1_func = ConvBNLayer( |
|
num_channels=3, |
|
num_filters=num_init_features, |
|
filter_size=7, |
|
stride=2, |
|
pad=3, |
|
act='relu', |
|
name="conv1") |
|
|
|
self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1) |
|
|
|
self.block_config = block_config |
|
|
|
self.dense_block_func_list = [] |
|
self.transition_func_list = [] |
|
pre_num_channels = num_init_features |
|
num_features = num_init_features |
|
for i, num_layers in enumerate(block_config): |
|
self.dense_block_func_list.append( |
|
self.add_sublayer( |
|
"db_conv_{}".format(i + 2), |
|
DenseBlock( |
|
num_channels=pre_num_channels, |
|
num_layers=num_layers, |
|
bn_size=bn_size, |
|
growth_rate=growth_rate, |
|
dropout=dropout, |
|
name='conv' + str(i + 2)))) |
|
|
|
num_features = num_features + num_layers * growth_rate |
|
pre_num_channels = num_features |
|
|
|
if i != len(block_config) - 1: |
|
self.transition_func_list.append( |
|
self.add_sublayer( |
|
"tr_conv{}_blk".format(i + 2), |
|
TransitionLayer( |
|
num_channels=pre_num_channels, |
|
num_output_features=num_features // 2, |
|
name='conv' + str(i + 2) + "_blk"))) |
|
pre_num_channels = num_features // 2 |
|
num_features = num_features // 2 |
|
|
|
self.batch_norm = BatchNorm( |
|
num_features, |
|
act="relu", |
|
param_attr=ParamAttr(name='conv5_blk_bn_scale'), |
|
bias_attr=ParamAttr(name='conv5_blk_bn_offset'), |
|
moving_mean_name='conv5_blk_bn_mean', |
|
moving_variance_name='conv5_blk_bn_variance') |
|
|
|
self.pool2d_avg = AdaptiveAvgPool2D(1) |
|
|
|
stdv = 1.0 / math.sqrt(num_features * 1.0) |
|
|
|
self.out = Linear( |
|
num_features, |
|
class_num, |
|
weight_attr=ParamAttr( |
|
initializer=Uniform(-stdv, stdv), name="fc_weights"), |
|
bias_attr=ParamAttr(name="fc_offset")) |
|
|
|
def forward(self, input): |
|
conv = self.conv1_func(input) |
|
conv = self.pool2d_max(conv) |
|
|
|
for i, num_layers in enumerate(self.block_config): |
|
conv = self.dense_block_func_list[i](conv) |
|
if i != len(self.block_config) - 1: |
|
conv = self.transition_func_list[i](conv) |
|
|
|
conv = self.batch_norm(conv) |
|
y = self.pool2d_avg(conv) |
|
y = paddle.flatten(y, start_axis=1, stop_axis=-1) |
|
y = self.out(y) |
|
return y |
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld=False): |
|
if pretrained is False: |
|
pass |
|
elif pretrained is True: |
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) |
|
elif isinstance(pretrained, str): |
|
load_dygraph_pretrain(model, pretrained) |
|
else: |
|
raise RuntimeError( |
|
"pretrained type is not available. Please use `string` or `boolean` type." |
|
) |
|
|
|
|
|
def DenseNet121(pretrained=False, use_ssld=False, **kwargs): |
|
model = DenseNet(layers=121, **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["DenseNet121"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def DenseNet161(pretrained=False, use_ssld=False, **kwargs): |
|
model = DenseNet(layers=161, **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["DenseNet161"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def DenseNet169(pretrained=False, use_ssld=False, **kwargs): |
|
model = DenseNet(layers=169, **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["DenseNet169"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def DenseNet201(pretrained=False, use_ssld=False, **kwargs): |
|
model = DenseNet(layers=201, **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["DenseNet201"], use_ssld=use_ssld) |
|
return model |
|
|
|
|
|
def DenseNet264(pretrained=False, use_ssld=False, **kwargs): |
|
model = DenseNet(layers=264, **kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["DenseNet264"], use_ssld=use_ssld) |
|
return model
|
|
|