You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
168 lines
5.6 KiB
168 lines
5.6 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import paddle |
|
from paddle import ParamAttr |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout, ReLU |
|
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D |
|
from paddle.nn.initializer import Uniform |
|
import math |
|
|
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url |
|
|
|
MODEL_URLS = { |
|
"AlexNet": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams" |
|
} |
|
|
|
__all__ = list(MODEL_URLS.keys()) |
|
|
|
|
|
class ConvPoolLayer(nn.Layer): |
|
def __init__(self, |
|
input_channels, |
|
output_channels, |
|
filter_size, |
|
stride, |
|
padding, |
|
stdv, |
|
groups=1, |
|
act=None, |
|
name=None): |
|
super(ConvPoolLayer, self).__init__() |
|
|
|
self.relu = ReLU() if act == "relu" else None |
|
|
|
self._conv = Conv2D( |
|
in_channels=input_channels, |
|
out_channels=output_channels, |
|
kernel_size=filter_size, |
|
stride=stride, |
|
padding=padding, |
|
groups=groups, |
|
weight_attr=ParamAttr( |
|
name=name + "_weights", initializer=Uniform(-stdv, stdv)), |
|
bias_attr=ParamAttr( |
|
name=name + "_offset", initializer=Uniform(-stdv, stdv))) |
|
self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0) |
|
|
|
def forward(self, inputs): |
|
x = self._conv(inputs) |
|
if self.relu is not None: |
|
x = self.relu(x) |
|
x = self._pool(x) |
|
return x |
|
|
|
|
|
class AlexNetDY(nn.Layer): |
|
def __init__(self, class_num=1000): |
|
super(AlexNetDY, self).__init__() |
|
|
|
stdv = 1.0 / math.sqrt(3 * 11 * 11) |
|
self._conv1 = ConvPoolLayer( |
|
3, 64, 11, 4, 2, stdv, act="relu", name="conv1") |
|
stdv = 1.0 / math.sqrt(64 * 5 * 5) |
|
self._conv2 = ConvPoolLayer( |
|
64, 192, 5, 1, 2, stdv, act="relu", name="conv2") |
|
stdv = 1.0 / math.sqrt(192 * 3 * 3) |
|
self._conv3 = Conv2D( |
|
192, |
|
384, |
|
3, |
|
stride=1, |
|
padding=1, |
|
weight_attr=ParamAttr( |
|
name="conv3_weights", initializer=Uniform(-stdv, stdv)), |
|
bias_attr=ParamAttr( |
|
name="conv3_offset", initializer=Uniform(-stdv, stdv))) |
|
stdv = 1.0 / math.sqrt(384 * 3 * 3) |
|
self._conv4 = Conv2D( |
|
384, |
|
256, |
|
3, |
|
stride=1, |
|
padding=1, |
|
weight_attr=ParamAttr( |
|
name="conv4_weights", initializer=Uniform(-stdv, stdv)), |
|
bias_attr=ParamAttr( |
|
name="conv4_offset", initializer=Uniform(-stdv, stdv))) |
|
stdv = 1.0 / math.sqrt(256 * 3 * 3) |
|
self._conv5 = ConvPoolLayer( |
|
256, 256, 3, 1, 1, stdv, act="relu", name="conv5") |
|
stdv = 1.0 / math.sqrt(256 * 6 * 6) |
|
|
|
self._drop1 = Dropout(p=0.5, mode="downscale_in_infer") |
|
self._fc6 = Linear( |
|
in_features=256 * 6 * 6, |
|
out_features=4096, |
|
weight_attr=ParamAttr( |
|
name="fc6_weights", initializer=Uniform(-stdv, stdv)), |
|
bias_attr=ParamAttr( |
|
name="fc6_offset", initializer=Uniform(-stdv, stdv))) |
|
|
|
self._drop2 = Dropout(p=0.5, mode="downscale_in_infer") |
|
self._fc7 = Linear( |
|
in_features=4096, |
|
out_features=4096, |
|
weight_attr=ParamAttr( |
|
name="fc7_weights", initializer=Uniform(-stdv, stdv)), |
|
bias_attr=ParamAttr( |
|
name="fc7_offset", initializer=Uniform(-stdv, stdv))) |
|
self._fc8 = Linear( |
|
in_features=4096, |
|
out_features=class_num, |
|
weight_attr=ParamAttr( |
|
name="fc8_weights", initializer=Uniform(-stdv, stdv)), |
|
bias_attr=ParamAttr( |
|
name="fc8_offset", initializer=Uniform(-stdv, stdv))) |
|
|
|
def forward(self, inputs): |
|
x = self._conv1(inputs) |
|
x = self._conv2(x) |
|
x = self._conv3(x) |
|
x = F.relu(x) |
|
x = self._conv4(x) |
|
x = F.relu(x) |
|
x = self._conv5(x) |
|
x = paddle.flatten(x, start_axis=1, stop_axis=-1) |
|
x = self._drop1(x) |
|
x = self._fc6(x) |
|
x = F.relu(x) |
|
x = self._drop2(x) |
|
x = self._fc7(x) |
|
x = F.relu(x) |
|
x = self._fc8(x) |
|
return x |
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld=False): |
|
if pretrained is False: |
|
pass |
|
elif pretrained is True: |
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) |
|
elif isinstance(pretrained, str): |
|
load_dygraph_pretrain(model, pretrained) |
|
else: |
|
raise RuntimeError( |
|
"pretrained type is not available. Please use `string` or `boolean` type." |
|
) |
|
|
|
|
|
def AlexNet(pretrained=False, use_ssld=False, **kwargs): |
|
model = AlexNetDY(**kwargs) |
|
_load_pretrained( |
|
pretrained, model, MODEL_URLS["AlexNet"], use_ssld=use_ssld) |
|
return model
|
|
|