You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
591 lines
20 KiB
591 lines
20 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import numpy as np |
|
import paddle |
|
from paddle import ParamAttr |
|
import paddle.nn as nn |
|
from paddle.nn import Conv2D, BatchNorm, Linear |
|
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D |
|
from paddle.nn.initializer import Uniform |
|
import math |
|
|
|
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer |
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url |
|
|
|
MODEL_URLS = { |
|
"ResNet18": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams", |
|
"ResNet18_vd": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams", |
|
"ResNet34": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams", |
|
"ResNet34_vd": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams", |
|
"ResNet50": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams", |
|
"ResNet50_vd": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams", |
|
"ResNet101": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams", |
|
"ResNet101_vd": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams", |
|
"ResNet152": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams", |
|
"ResNet152_vd": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams", |
|
"ResNet200_vd": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams", |
|
} |
|
|
|
MODEL_STAGES_PATTERN = { |
|
"ResNet18": ["blocks[1]", "blocks[3]", "blocks[5]", "blocks[7]"], |
|
"ResNet34": ["blocks[2]", "blocks[6]", "blocks[12]", "blocks[15]"], |
|
"ResNet50": ["blocks[2]", "blocks[6]", "blocks[12]", "blocks[15]"], |
|
"ResNet101": ["blocks[2]", "blocks[6]", "blocks[29]", "blocks[32]"], |
|
"ResNet152": ["blocks[2]", "blocks[10]", "blocks[46]", "blocks[49]"], |
|
"ResNet200": ["blocks[2]", "blocks[14]", "blocks[62]", "blocks[65]"] |
|
} |
|
|
|
__all__ = MODEL_URLS.keys() |
|
''' |
|
ResNet config: dict. |
|
key: depth of ResNet. |
|
values: config's dict of specific model. |
|
keys: |
|
block_type: Two different blocks in ResNet, BasicBlock and BottleneckBlock are optional. |
|
block_depth: The number of blocks in different stages in ResNet. |
|
num_channels: The number of channels to enter the next stage. |
|
''' |
|
NET_CONFIG = { |
|
"18": { |
|
"block_type": "BasicBlock", |
|
"block_depth": [2, 2, 2, 2], |
|
"num_channels": [64, 64, 128, 256] |
|
}, |
|
"34": { |
|
"block_type": "BasicBlock", |
|
"block_depth": [3, 4, 6, 3], |
|
"num_channels": [64, 64, 128, 256] |
|
}, |
|
"50": { |
|
"block_type": "BottleneckBlock", |
|
"block_depth": [3, 4, 6, 3], |
|
"num_channels": [64, 256, 512, 1024] |
|
}, |
|
"101": { |
|
"block_type": "BottleneckBlock", |
|
"block_depth": [3, 4, 23, 3], |
|
"num_channels": [64, 256, 512, 1024] |
|
}, |
|
"152": { |
|
"block_type": "BottleneckBlock", |
|
"block_depth": [3, 8, 36, 3], |
|
"num_channels": [64, 256, 512, 1024] |
|
}, |
|
"200": { |
|
"block_type": "BottleneckBlock", |
|
"block_depth": [3, 12, 48, 3], |
|
"num_channels": [64, 256, 512, 1024] |
|
}, |
|
} |
|
|
|
|
|
class ConvBNLayer(TheseusLayer): |
|
def __init__(self, |
|
num_channels, |
|
num_filters, |
|
filter_size, |
|
stride=1, |
|
groups=1, |
|
is_vd_mode=False, |
|
act=None, |
|
lr_mult=1.0, |
|
data_format="NCHW"): |
|
super().__init__() |
|
self.is_vd_mode = is_vd_mode |
|
self.act = act |
|
self.avg_pool = AvgPool2D( |
|
kernel_size=2, stride=2, padding=0, ceil_mode=True) |
|
self.conv = Conv2D( |
|
in_channels=num_channels, |
|
out_channels=num_filters, |
|
kernel_size=filter_size, |
|
stride=stride, |
|
padding=(filter_size - 1) // 2, |
|
groups=groups, |
|
weight_attr=ParamAttr(learning_rate=lr_mult), |
|
bias_attr=False, |
|
data_format=data_format) |
|
self.bn = BatchNorm( |
|
num_filters, |
|
param_attr=ParamAttr(learning_rate=lr_mult), |
|
bias_attr=ParamAttr(learning_rate=lr_mult), |
|
data_layout=data_format) |
|
self.relu = nn.ReLU() |
|
|
|
def forward(self, x): |
|
if self.is_vd_mode: |
|
x = self.avg_pool(x) |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
if self.act: |
|
x = self.relu(x) |
|
return x |
|
|
|
|
|
class BottleneckBlock(TheseusLayer): |
|
def __init__(self, |
|
num_channels, |
|
num_filters, |
|
stride, |
|
shortcut=True, |
|
if_first=False, |
|
lr_mult=1.0, |
|
data_format="NCHW"): |
|
super().__init__() |
|
|
|
self.conv0 = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=num_filters, |
|
filter_size=1, |
|
act="relu", |
|
lr_mult=lr_mult, |
|
data_format=data_format) |
|
self.conv1 = ConvBNLayer( |
|
num_channels=num_filters, |
|
num_filters=num_filters, |
|
filter_size=3, |
|
stride=stride, |
|
act="relu", |
|
lr_mult=lr_mult, |
|
data_format=data_format) |
|
self.conv2 = ConvBNLayer( |
|
num_channels=num_filters, |
|
num_filters=num_filters * 4, |
|
filter_size=1, |
|
act=None, |
|
lr_mult=lr_mult, |
|
data_format=data_format) |
|
|
|
if not shortcut: |
|
self.short = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=num_filters * 4, |
|
filter_size=1, |
|
stride=stride if if_first else 1, |
|
is_vd_mode=False if if_first else True, |
|
lr_mult=lr_mult, |
|
data_format=data_format) |
|
self.relu = nn.ReLU() |
|
self.shortcut = shortcut |
|
|
|
def forward(self, x): |
|
identity = x |
|
x = self.conv0(x) |
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
|
|
if self.shortcut: |
|
short = identity |
|
else: |
|
short = self.short(identity) |
|
x = paddle.add(x=x, y=short) |
|
x = self.relu(x) |
|
return x |
|
|
|
|
|
class BasicBlock(TheseusLayer): |
|
def __init__(self, |
|
num_channels, |
|
num_filters, |
|
stride, |
|
shortcut=True, |
|
if_first=False, |
|
lr_mult=1.0, |
|
data_format="NCHW"): |
|
super().__init__() |
|
|
|
self.stride = stride |
|
self.conv0 = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=num_filters, |
|
filter_size=3, |
|
stride=stride, |
|
act="relu", |
|
lr_mult=lr_mult, |
|
data_format=data_format) |
|
self.conv1 = ConvBNLayer( |
|
num_channels=num_filters, |
|
num_filters=num_filters, |
|
filter_size=3, |
|
act=None, |
|
lr_mult=lr_mult, |
|
data_format=data_format) |
|
if not shortcut: |
|
self.short = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=num_filters, |
|
filter_size=1, |
|
stride=stride if if_first else 1, |
|
is_vd_mode=False if if_first else True, |
|
lr_mult=lr_mult, |
|
data_format=data_format) |
|
self.shortcut = shortcut |
|
self.relu = nn.ReLU() |
|
|
|
def forward(self, x): |
|
identity = x |
|
x = self.conv0(x) |
|
x = self.conv1(x) |
|
if self.shortcut: |
|
short = identity |
|
else: |
|
short = self.short(identity) |
|
x = paddle.add(x=x, y=short) |
|
x = self.relu(x) |
|
return x |
|
|
|
|
|
class ResNet(TheseusLayer): |
|
""" |
|
ResNet |
|
Args: |
|
config: dict. config of ResNet. |
|
version: str="vb". Different version of ResNet, version vd can perform better. |
|
class_num: int=1000. The number of classes. |
|
lr_mult_list: list. Control the learning rate of different stages. |
|
Returns: |
|
model: nn.Layer. Specific ResNet model depends on args. |
|
""" |
|
|
|
def __init__(self, |
|
config, |
|
stages_pattern, |
|
version="vb", |
|
class_num=1000, |
|
lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0], |
|
data_format="NCHW", |
|
input_image_channel=3, |
|
return_patterns=None, |
|
return_stages=None): |
|
super().__init__() |
|
|
|
self.cfg = config |
|
self.lr_mult_list = lr_mult_list |
|
self.is_vd_mode = version == "vd" |
|
self.class_num = class_num |
|
self.num_filters = [64, 128, 256, 512] |
|
self.block_depth = self.cfg["block_depth"] |
|
self.block_type = self.cfg["block_type"] |
|
self.num_channels = self.cfg["num_channels"] |
|
self.channels_mult = 1 if self.num_channels[-1] == 256 else 4 |
|
|
|
assert isinstance(self.lr_mult_list, ( |
|
list, tuple |
|
)), "lr_mult_list should be in (list, tuple) but got {}".format( |
|
type(self.lr_mult_list)) |
|
assert len(self.lr_mult_list |
|
) == 5, "lr_mult_list length should be 5 but got {}".format( |
|
len(self.lr_mult_list)) |
|
|
|
self.stem_cfg = { |
|
#num_channels, num_filters, filter_size, stride |
|
"vb": [[input_image_channel, 64, 7, 2]], |
|
"vd": |
|
[[input_image_channel, 32, 3, 2], [32, 32, 3, 1], [32, 64, 3, 1]] |
|
} |
|
|
|
self.stem = nn.Sequential(*[ |
|
ConvBNLayer( |
|
num_channels=in_c, |
|
num_filters=out_c, |
|
filter_size=k, |
|
stride=s, |
|
act="relu", |
|
lr_mult=self.lr_mult_list[0], |
|
data_format=data_format) |
|
for in_c, out_c, k, s in self.stem_cfg[version] |
|
]) |
|
|
|
self.max_pool = MaxPool2D( |
|
kernel_size=3, stride=2, padding=1, data_format=data_format) |
|
block_list = [] |
|
for block_idx in range(len(self.block_depth)): |
|
shortcut = False |
|
for i in range(self.block_depth[block_idx]): |
|
block_list.append(globals()[self.block_type]( |
|
num_channels=self.num_channels[block_idx] if i == 0 else |
|
self.num_filters[block_idx] * self.channels_mult, |
|
num_filters=self.num_filters[block_idx], |
|
stride=2 if i == 0 and block_idx != 0 else 1, |
|
shortcut=shortcut, |
|
if_first=block_idx == i == 0 if version == "vd" else True, |
|
lr_mult=self.lr_mult_list[block_idx + 1], |
|
data_format=data_format)) |
|
shortcut = True |
|
self.blocks = nn.Sequential(*block_list) |
|
|
|
self.avg_pool = AdaptiveAvgPool2D(1, data_format=data_format) |
|
self.flatten = nn.Flatten() |
|
self.avg_pool_channels = self.num_channels[-1] * 2 |
|
stdv = 1.0 / math.sqrt(self.avg_pool_channels * 1.0) |
|
self.fc = Linear( |
|
self.avg_pool_channels, |
|
self.class_num, |
|
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv))) |
|
|
|
self.data_format = data_format |
|
|
|
super().init_res( |
|
stages_pattern, |
|
return_patterns=return_patterns, |
|
return_stages=return_stages) |
|
|
|
def forward(self, x): |
|
with paddle.static.amp.fp16_guard(): |
|
if self.data_format == "NHWC": |
|
x = paddle.transpose(x, [0, 2, 3, 1]) |
|
x.stop_gradient = True |
|
x = self.stem(x) |
|
x = self.max_pool(x) |
|
x = self.blocks(x) |
|
x = self.avg_pool(x) |
|
x = self.flatten(x) |
|
x = self.fc(x) |
|
return x |
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld): |
|
if pretrained is False: |
|
pass |
|
elif pretrained is True: |
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) |
|
elif isinstance(pretrained, str): |
|
load_dygraph_pretrain(model, pretrained) |
|
else: |
|
raise RuntimeError( |
|
"pretrained type is not available. Please use `string` or `boolean` type." |
|
) |
|
|
|
|
|
def ResNet18(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
ResNet18 |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `ResNet18` model depends on args. |
|
""" |
|
model = ResNet( |
|
config=NET_CONFIG["18"], |
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet18"], |
|
version="vb", |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet18"], use_ssld) |
|
return model |
|
|
|
|
|
def ResNet18_vd(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
ResNet18_vd |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `ResNet18_vd` model depends on args. |
|
""" |
|
model = ResNet( |
|
config=NET_CONFIG["18"], |
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet18"], |
|
version="vd", |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet18_vd"], use_ssld) |
|
return model |
|
|
|
|
|
def ResNet34(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
ResNet34 |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `ResNet34` model depends on args. |
|
""" |
|
model = ResNet( |
|
config=NET_CONFIG["34"], |
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet34"], |
|
version="vb", |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet34"], use_ssld) |
|
return model |
|
|
|
|
|
def ResNet34_vd(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
ResNet34_vd |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `ResNet34_vd` model depends on args. |
|
""" |
|
model = ResNet( |
|
config=NET_CONFIG["34"], |
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet34"], |
|
version="vd", |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet34_vd"], use_ssld) |
|
return model |
|
|
|
|
|
def ResNet50(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
ResNet50 |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `ResNet50` model depends on args. |
|
""" |
|
model = ResNet( |
|
config=NET_CONFIG["50"], |
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet50"], |
|
version="vb", |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet50"], use_ssld) |
|
return model |
|
|
|
|
|
def ResNet50_vd(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
ResNet50_vd |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `ResNet50_vd` model depends on args. |
|
""" |
|
model = ResNet( |
|
config=NET_CONFIG["50"], |
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet50"], |
|
version="vd", |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet50_vd"], use_ssld) |
|
return model |
|
|
|
|
|
def ResNet101(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
ResNet101 |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `ResNet101` model depends on args. |
|
""" |
|
model = ResNet( |
|
config=NET_CONFIG["101"], |
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet101"], |
|
version="vb", |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet101"], use_ssld) |
|
return model |
|
|
|
|
|
def ResNet101_vd(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
ResNet101_vd |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `ResNet101_vd` model depends on args. |
|
""" |
|
model = ResNet( |
|
config=NET_CONFIG["101"], |
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet101"], |
|
version="vd", |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet101_vd"], use_ssld) |
|
return model |
|
|
|
|
|
def ResNet152(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
ResNet152 |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `ResNet152` model depends on args. |
|
""" |
|
model = ResNet( |
|
config=NET_CONFIG["152"], |
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet152"], |
|
version="vb", |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet152"], use_ssld) |
|
return model |
|
|
|
|
|
def ResNet152_vd(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
ResNet152_vd |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `ResNet152_vd` model depends on args. |
|
""" |
|
model = ResNet( |
|
config=NET_CONFIG["152"], |
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet152"], |
|
version="vd", |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet152_vd"], use_ssld) |
|
return model |
|
|
|
|
|
def ResNet200_vd(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
ResNet200_vd |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `ResNet200_vd` model depends on args. |
|
""" |
|
model = ResNet( |
|
config=NET_CONFIG["200"], |
|
stages_pattern=MODEL_STAGES_PATTERN["ResNet200"], |
|
version="vd", |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["ResNet200_vd"], use_ssld) |
|
return model
|
|
|