You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
585 lines
20 KiB
585 lines
20 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
from paddle import ParamAttr |
|
from paddle.nn import AdaptiveAvgPool2D, BatchNorm, Conv2D, Dropout, Linear |
|
from paddle.regularizer import L2Decay |
|
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer |
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url |
|
|
|
MODEL_URLS = { |
|
"MobileNetV3_small_x0_35": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_pretrained.pdparams", |
|
"MobileNetV3_small_x0_5": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_5_pretrained.pdparams", |
|
"MobileNetV3_small_x0_75": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_75_pretrained.pdparams", |
|
"MobileNetV3_small_x1_0": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_pretrained.pdparams", |
|
"MobileNetV3_small_x1_25": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_25_pretrained.pdparams", |
|
"MobileNetV3_large_x0_35": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_35_pretrained.pdparams", |
|
"MobileNetV3_large_x0_5": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_5_pretrained.pdparams", |
|
"MobileNetV3_large_x0_75": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_75_pretrained.pdparams", |
|
"MobileNetV3_large_x1_0": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_pretrained.pdparams", |
|
"MobileNetV3_large_x1_25": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_25_pretrained.pdparams", |
|
} |
|
|
|
MODEL_STAGES_PATTERN = { |
|
"MobileNetV3_small": ["blocks[0]", "blocks[2]", "blocks[7]", "blocks[10]"], |
|
"MobileNetV3_large": |
|
["blocks[0]", "blocks[2]", "blocks[5]", "blocks[11]", "blocks[14]"] |
|
} |
|
|
|
__all__ = MODEL_URLS.keys() |
|
|
|
# "large", "small" is just for MobinetV3_large, MobileNetV3_small respectively. |
|
# The type of "large" or "small" config is a list. Each element(list) represents a depthwise block, which is composed of k, exp, se, act, s. |
|
# k: kernel_size |
|
# exp: middle channel number in depthwise block |
|
# c: output channel number in depthwise block |
|
# se: whether to use SE block |
|
# act: which activation to use |
|
# s: stride in depthwise block |
|
NET_CONFIG = { |
|
"large": [ |
|
# k, exp, c, se, act, s |
|
[3, 16, 16, False, "relu", 1], |
|
[3, 64, 24, False, "relu", 2], |
|
[3, 72, 24, False, "relu", 1], |
|
[5, 72, 40, True, "relu", 2], |
|
[5, 120, 40, True, "relu", 1], |
|
[5, 120, 40, True, "relu", 1], |
|
[3, 240, 80, False, "hardswish", 2], |
|
[3, 200, 80, False, "hardswish", 1], |
|
[3, 184, 80, False, "hardswish", 1], |
|
[3, 184, 80, False, "hardswish", 1], |
|
[3, 480, 112, True, "hardswish", 1], |
|
[3, 672, 112, True, "hardswish", 1], |
|
[5, 672, 160, True, "hardswish", 2], |
|
[5, 960, 160, True, "hardswish", 1], |
|
[5, 960, 160, True, "hardswish", 1], |
|
], |
|
"small": [ |
|
# k, exp, c, se, act, s |
|
[3, 16, 16, True, "relu", 2], |
|
[3, 72, 24, False, "relu", 2], |
|
[3, 88, 24, False, "relu", 1], |
|
[5, 96, 40, True, "hardswish", 2], |
|
[5, 240, 40, True, "hardswish", 1], |
|
[5, 240, 40, True, "hardswish", 1], |
|
[5, 120, 48, True, "hardswish", 1], |
|
[5, 144, 48, True, "hardswish", 1], |
|
[5, 288, 96, True, "hardswish", 2], |
|
[5, 576, 96, True, "hardswish", 1], |
|
[5, 576, 96, True, "hardswish", 1], |
|
] |
|
} |
|
# first conv output channel number in MobileNetV3 |
|
STEM_CONV_NUMBER = 16 |
|
# last second conv output channel for "small" |
|
LAST_SECOND_CONV_SMALL = 576 |
|
# last second conv output channel for "large" |
|
LAST_SECOND_CONV_LARGE = 960 |
|
# last conv output channel number for "large" and "small" |
|
LAST_CONV = 1280 |
|
|
|
|
|
def _make_divisible(v, divisor=8, min_value=None): |
|
if min_value is None: |
|
min_value = divisor |
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) |
|
if new_v < 0.9 * v: |
|
new_v += divisor |
|
return new_v |
|
|
|
|
|
def _create_act(act): |
|
if act == "hardswish": |
|
return nn.Hardswish() |
|
elif act == "relu": |
|
return nn.ReLU() |
|
elif act is None: |
|
return None |
|
else: |
|
raise RuntimeError( |
|
"The activation function is not supported: {}".format(act)) |
|
|
|
|
|
class MobileNetV3(TheseusLayer): |
|
""" |
|
MobileNetV3 |
|
Args: |
|
config: list. MobileNetV3 depthwise blocks config. |
|
scale: float=1.0. The coefficient that controls the size of network parameters. |
|
class_num: int=1000. The number of classes. |
|
inplanes: int=16. The output channel number of first convolution layer. |
|
class_squeeze: int=960. The output channel number of penultimate convolution layer. |
|
class_expand: int=1280. The output channel number of last convolution layer. |
|
dropout_prob: float=0.2. Probability of setting units to zero. |
|
Returns: |
|
model: nn.Layer. Specific MobileNetV3 model depends on args. |
|
""" |
|
|
|
def __init__(self, |
|
config, |
|
stages_pattern, |
|
scale=1.0, |
|
class_num=1000, |
|
inplanes=STEM_CONV_NUMBER, |
|
class_squeeze=LAST_SECOND_CONV_LARGE, |
|
class_expand=LAST_CONV, |
|
dropout_prob=0.2, |
|
return_patterns=None, |
|
return_stages=None): |
|
super().__init__() |
|
|
|
self.cfg = config |
|
self.scale = scale |
|
self.inplanes = inplanes |
|
self.class_squeeze = class_squeeze |
|
self.class_expand = class_expand |
|
self.class_num = class_num |
|
|
|
self.conv = ConvBNLayer( |
|
in_c=3, |
|
out_c=_make_divisible(self.inplanes * self.scale), |
|
filter_size=3, |
|
stride=2, |
|
padding=1, |
|
num_groups=1, |
|
if_act=True, |
|
act="hardswish") |
|
|
|
self.blocks = nn.Sequential(*[ |
|
ResidualUnit( |
|
in_c=_make_divisible(self.inplanes * self.scale if i == 0 else |
|
self.cfg[i - 1][2] * self.scale), |
|
mid_c=_make_divisible(self.scale * exp), |
|
out_c=_make_divisible(self.scale * c), |
|
filter_size=k, |
|
stride=s, |
|
use_se=se, |
|
act=act) for i, (k, exp, c, se, act, s) in enumerate(self.cfg) |
|
]) |
|
|
|
self.last_second_conv = ConvBNLayer( |
|
in_c=_make_divisible(self.cfg[-1][2] * self.scale), |
|
out_c=_make_divisible(self.scale * self.class_squeeze), |
|
filter_size=1, |
|
stride=1, |
|
padding=0, |
|
num_groups=1, |
|
if_act=True, |
|
act="hardswish") |
|
|
|
self.avg_pool = AdaptiveAvgPool2D(1) |
|
|
|
self.last_conv = Conv2D( |
|
in_channels=_make_divisible(self.scale * self.class_squeeze), |
|
out_channels=self.class_expand, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias_attr=False) |
|
|
|
self.hardswish = nn.Hardswish() |
|
if dropout_prob is not None: |
|
self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer") |
|
else: |
|
self.dropout = None |
|
self.flatten = nn.Flatten(start_axis=1, stop_axis=-1) |
|
|
|
self.fc = Linear(self.class_expand, class_num) |
|
|
|
super().init_res( |
|
stages_pattern, |
|
return_patterns=return_patterns, |
|
return_stages=return_stages) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.blocks(x) |
|
x = self.last_second_conv(x) |
|
x = self.avg_pool(x) |
|
x = self.last_conv(x) |
|
x = self.hardswish(x) |
|
if self.dropout is not None: |
|
x = self.dropout(x) |
|
x = self.flatten(x) |
|
x = self.fc(x) |
|
|
|
return x |
|
|
|
|
|
class ConvBNLayer(TheseusLayer): |
|
def __init__(self, |
|
in_c, |
|
out_c, |
|
filter_size, |
|
stride, |
|
padding, |
|
num_groups=1, |
|
if_act=True, |
|
act=None): |
|
super().__init__() |
|
|
|
self.conv = Conv2D( |
|
in_channels=in_c, |
|
out_channels=out_c, |
|
kernel_size=filter_size, |
|
stride=stride, |
|
padding=padding, |
|
groups=num_groups, |
|
bias_attr=False) |
|
self.bn = BatchNorm( |
|
num_channels=out_c, |
|
act=None, |
|
param_attr=ParamAttr(regularizer=L2Decay(0.0)), |
|
bias_attr=ParamAttr(regularizer=L2Decay(0.0))) |
|
self.if_act = if_act |
|
self.act = _create_act(act) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
if self.if_act: |
|
x = self.act(x) |
|
return x |
|
|
|
|
|
class ResidualUnit(TheseusLayer): |
|
def __init__(self, |
|
in_c, |
|
mid_c, |
|
out_c, |
|
filter_size, |
|
stride, |
|
use_se, |
|
act=None): |
|
super().__init__() |
|
self.if_shortcut = stride == 1 and in_c == out_c |
|
self.if_se = use_se |
|
|
|
self.expand_conv = ConvBNLayer( |
|
in_c=in_c, |
|
out_c=mid_c, |
|
filter_size=1, |
|
stride=1, |
|
padding=0, |
|
if_act=True, |
|
act=act) |
|
self.bottleneck_conv = ConvBNLayer( |
|
in_c=mid_c, |
|
out_c=mid_c, |
|
filter_size=filter_size, |
|
stride=stride, |
|
padding=int((filter_size - 1) // 2), |
|
num_groups=mid_c, |
|
if_act=True, |
|
act=act) |
|
if self.if_se: |
|
self.mid_se = SEModule(mid_c) |
|
self.linear_conv = ConvBNLayer( |
|
in_c=mid_c, |
|
out_c=out_c, |
|
filter_size=1, |
|
stride=1, |
|
padding=0, |
|
if_act=False, |
|
act=None) |
|
|
|
def forward(self, x): |
|
identity = x |
|
x = self.expand_conv(x) |
|
x = self.bottleneck_conv(x) |
|
if self.if_se: |
|
x = self.mid_se(x) |
|
x = self.linear_conv(x) |
|
if self.if_shortcut: |
|
x = paddle.add(identity, x) |
|
return x |
|
|
|
|
|
# nn.Hardsigmoid can't transfer "slope" and "offset" in nn.functional.hardsigmoid |
|
class Hardsigmoid(TheseusLayer): |
|
def __init__(self, slope=0.2, offset=0.5): |
|
super().__init__() |
|
self.slope = slope |
|
self.offset = offset |
|
|
|
def forward(self, x): |
|
return nn.functional.hardsigmoid( |
|
x, slope=self.slope, offset=self.offset) |
|
|
|
|
|
class SEModule(TheseusLayer): |
|
def __init__(self, channel, reduction=4): |
|
super().__init__() |
|
self.avg_pool = AdaptiveAvgPool2D(1) |
|
self.conv1 = Conv2D( |
|
in_channels=channel, |
|
out_channels=channel // reduction, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.relu = nn.ReLU() |
|
self.conv2 = Conv2D( |
|
in_channels=channel // reduction, |
|
out_channels=channel, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.hardsigmoid = Hardsigmoid(slope=0.2, offset=0.5) |
|
|
|
def forward(self, x): |
|
identity = x |
|
x = self.avg_pool(x) |
|
x = self.conv1(x) |
|
x = self.relu(x) |
|
x = self.conv2(x) |
|
x = self.hardsigmoid(x) |
|
return paddle.multiply(x=identity, y=x) |
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld): |
|
if pretrained is False: |
|
pass |
|
elif pretrained is True: |
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) |
|
elif isinstance(pretrained, str): |
|
load_dygraph_pretrain(model, pretrained) |
|
else: |
|
raise RuntimeError( |
|
"pretrained type is not available. Please use `string` or `boolean` type." |
|
) |
|
|
|
|
|
def MobileNetV3_small_x0_35(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
MobileNetV3_small_x0_35 |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `MobileNetV3_small_x0_35` model depends on args. |
|
""" |
|
model = MobileNetV3( |
|
config=NET_CONFIG["small"], |
|
scale=0.35, |
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_small"], |
|
class_squeeze=LAST_SECOND_CONV_SMALL, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x0_35"], |
|
use_ssld) |
|
return model |
|
|
|
|
|
def MobileNetV3_small_x0_5(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
MobileNetV3_small_x0_5 |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `MobileNetV3_small_x0_5` model depends on args. |
|
""" |
|
model = MobileNetV3( |
|
config=NET_CONFIG["small"], |
|
scale=0.5, |
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_small"], |
|
class_squeeze=LAST_SECOND_CONV_SMALL, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x0_5"], |
|
use_ssld) |
|
return model |
|
|
|
|
|
def MobileNetV3_small_x0_75(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
MobileNetV3_small_x0_75 |
|
Args: |
|
pretrained: bool=false or str. if `true` load pretrained parameters, `false` otherwise. |
|
if str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `MobileNetV3_small_x0_75` model depends on args. |
|
""" |
|
model = MobileNetV3( |
|
config=NET_CONFIG["small"], |
|
scale=0.75, |
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_small"], |
|
class_squeeze=LAST_SECOND_CONV_SMALL, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x0_75"], |
|
use_ssld) |
|
return model |
|
|
|
|
|
def MobileNetV3_small_x1_0(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
MobileNetV3_small_x1_0 |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `MobileNetV3_small_x1_0` model depends on args. |
|
""" |
|
model = MobileNetV3( |
|
config=NET_CONFIG["small"], |
|
scale=1.0, |
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_small"], |
|
class_squeeze=LAST_SECOND_CONV_SMALL, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x1_0"], |
|
use_ssld) |
|
return model |
|
|
|
|
|
def MobileNetV3_small_x1_25(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
MobileNetV3_small_x1_25 |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `MobileNetV3_small_x1_25` model depends on args. |
|
""" |
|
model = MobileNetV3( |
|
config=NET_CONFIG["small"], |
|
scale=1.25, |
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_small"], |
|
class_squeeze=LAST_SECOND_CONV_SMALL, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_small_x1_25"], |
|
use_ssld) |
|
return model |
|
|
|
|
|
def MobileNetV3_large_x0_35(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
MobileNetV3_large_x0_35 |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `MobileNetV3_large_x0_35` model depends on args. |
|
""" |
|
model = MobileNetV3( |
|
config=NET_CONFIG["large"], |
|
scale=0.35, |
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_small"], |
|
class_squeeze=LAST_SECOND_CONV_LARGE, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x0_35"], |
|
use_ssld) |
|
return model |
|
|
|
|
|
def MobileNetV3_large_x0_5(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
MobileNetV3_large_x0_5 |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `MobileNetV3_large_x0_5` model depends on args. |
|
""" |
|
model = MobileNetV3( |
|
config=NET_CONFIG["large"], |
|
scale=0.5, |
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_large"], |
|
class_squeeze=LAST_SECOND_CONV_LARGE, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x0_5"], |
|
use_ssld) |
|
return model |
|
|
|
|
|
def MobileNetV3_large_x0_75(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
MobileNetV3_large_x0_75 |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `MobileNetV3_large_x0_75` model depends on args. |
|
""" |
|
model = MobileNetV3( |
|
config=NET_CONFIG["large"], |
|
scale=0.75, |
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_large"], |
|
class_squeeze=LAST_SECOND_CONV_LARGE, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x0_75"], |
|
use_ssld) |
|
return model |
|
|
|
|
|
def MobileNetV3_large_x1_0(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
MobileNetV3_large_x1_0 |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `MobileNetV3_large_x1_0` model depends on args. |
|
""" |
|
model = MobileNetV3( |
|
config=NET_CONFIG["large"], |
|
scale=1.0, |
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_large"], |
|
class_squeeze=LAST_SECOND_CONV_LARGE, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x1_0"], |
|
use_ssld) |
|
return model |
|
|
|
|
|
def MobileNetV3_large_x1_25(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
MobileNetV3_large_x1_25 |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `MobileNetV3_large_x1_25` model depends on args. |
|
""" |
|
model = MobileNetV3( |
|
config=NET_CONFIG["large"], |
|
scale=1.25, |
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV3_large"], |
|
class_squeeze=LAST_SECOND_CONV_LARGE, |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV3_large_x1_25"], |
|
use_ssld) |
|
return model
|
|
|