You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
253 lines
8.7 KiB
253 lines
8.7 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
from paddle import ParamAttr |
|
import paddle.nn as nn |
|
from paddle.nn import Conv2D, BatchNorm, Linear, ReLU, Flatten |
|
from paddle.nn import AdaptiveAvgPool2D |
|
from paddle.nn.initializer import KaimingNormal |
|
|
|
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer |
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url |
|
|
|
MODEL_URLS = { |
|
"MobileNetV1_x0_25": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_25_pretrained.pdparams", |
|
"MobileNetV1_x0_5": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_5_pretrained.pdparams", |
|
"MobileNetV1_x0_75": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_75_pretrained.pdparams", |
|
"MobileNetV1": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_pretrained.pdparams" |
|
} |
|
|
|
MODEL_STAGES_PATTERN = { |
|
"MobileNetV1": ["blocks[0]", "blocks[2]", "blocks[4]", "blocks[10]"] |
|
} |
|
|
|
__all__ = MODEL_URLS.keys() |
|
|
|
|
|
class ConvBNLayer(TheseusLayer): |
|
def __init__(self, |
|
num_channels, |
|
filter_size, |
|
num_filters, |
|
stride, |
|
padding, |
|
num_groups=1): |
|
super().__init__() |
|
|
|
self.conv = Conv2D( |
|
in_channels=num_channels, |
|
out_channels=num_filters, |
|
kernel_size=filter_size, |
|
stride=stride, |
|
padding=padding, |
|
groups=num_groups, |
|
weight_attr=ParamAttr(initializer=KaimingNormal()), |
|
bias_attr=False) |
|
self.bn = BatchNorm(num_filters) |
|
self.relu = ReLU() |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
x = self.relu(x) |
|
return x |
|
|
|
|
|
class DepthwiseSeparable(TheseusLayer): |
|
def __init__(self, num_channels, num_filters1, num_filters2, num_groups, |
|
stride, scale): |
|
super().__init__() |
|
|
|
self.depthwise_conv = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=int(num_filters1 * scale), |
|
filter_size=3, |
|
stride=stride, |
|
padding=1, |
|
num_groups=int(num_groups * scale)) |
|
|
|
self.pointwise_conv = ConvBNLayer( |
|
num_channels=int(num_filters1 * scale), |
|
filter_size=1, |
|
num_filters=int(num_filters2 * scale), |
|
stride=1, |
|
padding=0) |
|
|
|
def forward(self, x): |
|
x = self.depthwise_conv(x) |
|
x = self.pointwise_conv(x) |
|
return x |
|
|
|
|
|
class MobileNet(TheseusLayer): |
|
""" |
|
MobileNet |
|
Args: |
|
scale: float=1.0. The coefficient that controls the size of network parameters. |
|
class_num: int=1000. The number of classes. |
|
Returns: |
|
model: nn.Layer. Specific MobileNet model depends on args. |
|
""" |
|
|
|
def __init__(self, |
|
stages_pattern, |
|
scale=1.0, |
|
class_num=1000, |
|
return_patterns=None, |
|
return_stages=None): |
|
super().__init__() |
|
self.scale = scale |
|
|
|
self.conv = ConvBNLayer( |
|
num_channels=3, |
|
filter_size=3, |
|
num_filters=int(32 * scale), |
|
stride=2, |
|
padding=1) |
|
|
|
#num_channels, num_filters1, num_filters2, num_groups, stride |
|
self.cfg = [[int(32 * scale), 32, 64, 32, 1], |
|
[int(64 * scale), 64, 128, 64, 2], |
|
[int(128 * scale), 128, 128, 128, 1], |
|
[int(128 * scale), 128, 256, 128, 2], |
|
[int(256 * scale), 256, 256, 256, 1], |
|
[int(256 * scale), 256, 512, 256, 2], |
|
[int(512 * scale), 512, 512, 512, 1], |
|
[int(512 * scale), 512, 512, 512, 1], |
|
[int(512 * scale), 512, 512, 512, 1], |
|
[int(512 * scale), 512, 512, 512, 1], |
|
[int(512 * scale), 512, 512, 512, 1], |
|
[int(512 * scale), 512, 1024, 512, 2], |
|
[int(1024 * scale), 1024, 1024, 1024, 1]] |
|
|
|
self.blocks = nn.Sequential(*[ |
|
DepthwiseSeparable( |
|
num_channels=params[0], |
|
num_filters1=params[1], |
|
num_filters2=params[2], |
|
num_groups=params[3], |
|
stride=params[4], |
|
scale=scale) for params in self.cfg |
|
]) |
|
|
|
self.avg_pool = AdaptiveAvgPool2D(1) |
|
self.flatten = Flatten(start_axis=1, stop_axis=-1) |
|
|
|
self.fc = Linear( |
|
int(1024 * scale), |
|
class_num, |
|
weight_attr=ParamAttr(initializer=KaimingNormal())) |
|
|
|
super().init_res( |
|
stages_pattern, |
|
return_patterns=return_patterns, |
|
return_stages=return_stages) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.blocks(x) |
|
x = self.avg_pool(x) |
|
x = self.flatten(x) |
|
x = self.fc(x) |
|
return x |
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld): |
|
if pretrained is False: |
|
pass |
|
elif pretrained is True: |
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) |
|
elif isinstance(pretrained, str): |
|
load_dygraph_pretrain(model, pretrained) |
|
else: |
|
raise RuntimeError( |
|
"pretrained type is not available. Please use `string` or `boolean` type." |
|
) |
|
|
|
|
|
def MobileNetV1_x0_25(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
MobileNetV1_x0_25 |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `MobileNetV1_x0_25` model depends on args. |
|
""" |
|
model = MobileNet( |
|
scale=0.25, |
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV1"], |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV1_x0_25"], |
|
use_ssld) |
|
return model |
|
|
|
|
|
def MobileNetV1_x0_5(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
MobileNetV1_x0_5 |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `MobileNetV1_x0_5` model depends on args. |
|
""" |
|
model = MobileNet( |
|
scale=0.5, stages_pattern=MODEL_STAGES_PATTERN["MobileNetV1"], **kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV1_x0_5"], |
|
use_ssld) |
|
return model |
|
|
|
|
|
def MobileNetV1_x0_75(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
MobileNetV1_x0_75 |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `MobileNetV1_x0_75` model depends on args. |
|
""" |
|
model = MobileNet( |
|
scale=0.75, |
|
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV1"], |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV1_x0_75"], |
|
use_ssld) |
|
return model |
|
|
|
|
|
def MobileNetV1(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
MobileNetV1 |
|
Args: |
|
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise. |
|
If str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `MobileNetV1` model depends on args. |
|
""" |
|
model = MobileNet( |
|
scale=1.0, stages_pattern=MODEL_STAGES_PATTERN["MobileNetV1"], **kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV1"], use_ssld) |
|
return model
|
|
|