You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

253 lines
8.7 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2D, BatchNorm, Linear, ReLU, Flatten
from paddle.nn import AdaptiveAvgPool2D
from paddle.nn.initializer import KaimingNormal
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
MODEL_URLS = {
"MobileNetV1_x0_25":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_25_pretrained.pdparams",
"MobileNetV1_x0_5":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_5_pretrained.pdparams",
"MobileNetV1_x0_75":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_75_pretrained.pdparams",
"MobileNetV1":
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_pretrained.pdparams"
}
MODEL_STAGES_PATTERN = {
"MobileNetV1": ["blocks[0]", "blocks[2]", "blocks[4]", "blocks[10]"]
}
__all__ = MODEL_URLS.keys()
class ConvBNLayer(TheseusLayer):
def __init__(self,
num_channels,
filter_size,
num_filters,
stride,
padding,
num_groups=1):
super().__init__()
self.conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
weight_attr=ParamAttr(initializer=KaimingNormal()),
bias_attr=False)
self.bn = BatchNorm(num_filters)
self.relu = ReLU()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class DepthwiseSeparable(TheseusLayer):
def __init__(self, num_channels, num_filters1, num_filters2, num_groups,
stride, scale):
super().__init__()
self.depthwise_conv = ConvBNLayer(
num_channels=num_channels,
num_filters=int(num_filters1 * scale),
filter_size=3,
stride=stride,
padding=1,
num_groups=int(num_groups * scale))
self.pointwise_conv = ConvBNLayer(
num_channels=int(num_filters1 * scale),
filter_size=1,
num_filters=int(num_filters2 * scale),
stride=1,
padding=0)
def forward(self, x):
x = self.depthwise_conv(x)
x = self.pointwise_conv(x)
return x
class MobileNet(TheseusLayer):
"""
MobileNet
Args:
scale: float=1.0. The coefficient that controls the size of network parameters.
class_num: int=1000. The number of classes.
Returns:
model: nn.Layer. Specific MobileNet model depends on args.
"""
def __init__(self,
stages_pattern,
scale=1.0,
class_num=1000,
return_patterns=None,
return_stages=None):
super().__init__()
self.scale = scale
self.conv = ConvBNLayer(
num_channels=3,
filter_size=3,
num_filters=int(32 * scale),
stride=2,
padding=1)
#num_channels, num_filters1, num_filters2, num_groups, stride
self.cfg = [[int(32 * scale), 32, 64, 32, 1],
[int(64 * scale), 64, 128, 64, 2],
[int(128 * scale), 128, 128, 128, 1],
[int(128 * scale), 128, 256, 128, 2],
[int(256 * scale), 256, 256, 256, 1],
[int(256 * scale), 256, 512, 256, 2],
[int(512 * scale), 512, 512, 512, 1],
[int(512 * scale), 512, 512, 512, 1],
[int(512 * scale), 512, 512, 512, 1],
[int(512 * scale), 512, 512, 512, 1],
[int(512 * scale), 512, 512, 512, 1],
[int(512 * scale), 512, 1024, 512, 2],
[int(1024 * scale), 1024, 1024, 1024, 1]]
self.blocks = nn.Sequential(*[
DepthwiseSeparable(
num_channels=params[0],
num_filters1=params[1],
num_filters2=params[2],
num_groups=params[3],
stride=params[4],
scale=scale) for params in self.cfg
])
self.avg_pool = AdaptiveAvgPool2D(1)
self.flatten = Flatten(start_axis=1, stop_axis=-1)
self.fc = Linear(
int(1024 * scale),
class_num,
weight_attr=ParamAttr(initializer=KaimingNormal()))
super().init_res(
stages_pattern,
return_patterns=return_patterns,
return_stages=return_stages)
def forward(self, x):
x = self.conv(x)
x = self.blocks(x)
x = self.avg_pool(x)
x = self.flatten(x)
x = self.fc(x)
return x
def _load_pretrained(pretrained, model, model_url, use_ssld):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def MobileNetV1_x0_25(pretrained=False, use_ssld=False, **kwargs):
"""
MobileNetV1_x0_25
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_25` model depends on args.
"""
model = MobileNet(
scale=0.25,
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV1"],
**kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV1_x0_25"],
use_ssld)
return model
def MobileNetV1_x0_5(pretrained=False, use_ssld=False, **kwargs):
"""
MobileNetV1_x0_5
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_5` model depends on args.
"""
model = MobileNet(
scale=0.5, stages_pattern=MODEL_STAGES_PATTERN["MobileNetV1"], **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV1_x0_5"],
use_ssld)
return model
def MobileNetV1_x0_75(pretrained=False, use_ssld=False, **kwargs):
"""
MobileNetV1_x0_75
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_75` model depends on args.
"""
model = MobileNet(
scale=0.75,
stages_pattern=MODEL_STAGES_PATTERN["MobileNetV1"],
**kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV1_x0_75"],
use_ssld)
return model
def MobileNetV1(pretrained=False, use_ssld=False, **kwargs):
"""
MobileNetV1
Args:
pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
If str, means the path of the pretrained model.
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
Returns:
model: nn.Layer. Specific `MobileNetV1` model depends on args.
"""
model = MobileNet(
scale=1.0, stages_pattern=MODEL_STAGES_PATTERN["MobileNetV1"], **kwargs)
_load_pretrained(pretrained, model, MODEL_URLS["MobileNetV1"], use_ssld)
return model