You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
553 lines
17 KiB
553 lines
17 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import, division, print_function |
|
import math |
|
import paddle |
|
from paddle import ParamAttr |
|
import paddle.nn as nn |
|
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout |
|
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D |
|
from paddle.nn.initializer import Uniform |
|
|
|
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer |
|
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url |
|
|
|
MODEL_URLS = { |
|
"InceptionV3": |
|
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams" |
|
} |
|
|
|
MODEL_STAGES_PATTERN = { |
|
"InceptionV3": [ |
|
"inception_block_list[2]", "inception_block_list[3]", |
|
"inception_block_list[7]", "inception_block_list[8]", |
|
"inception_block_list[10]" |
|
] |
|
} |
|
|
|
__all__ = MODEL_URLS.keys() |
|
''' |
|
InceptionV3 config: dict. |
|
key: inception blocks of InceptionV3. |
|
values: conv num in different blocks. |
|
''' |
|
NET_CONFIG = { |
|
"inception_a": [[192, 256, 288], [32, 64, 64]], |
|
"inception_b": [288], |
|
"inception_c": [[768, 768, 768, 768], [128, 160, 160, 192]], |
|
"inception_d": [768], |
|
"inception_e": [1280, 2048] |
|
} |
|
|
|
|
|
class ConvBNLayer(TheseusLayer): |
|
def __init__(self, |
|
num_channels, |
|
num_filters, |
|
filter_size, |
|
stride=1, |
|
padding=0, |
|
groups=1, |
|
act="relu"): |
|
super().__init__() |
|
self.act = act |
|
self.conv = Conv2D( |
|
in_channels=num_channels, |
|
out_channels=num_filters, |
|
kernel_size=filter_size, |
|
stride=stride, |
|
padding=padding, |
|
groups=groups, |
|
bias_attr=False) |
|
self.bn = BatchNorm(num_filters) |
|
self.relu = nn.ReLU() |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
if self.act: |
|
x = self.relu(x) |
|
return x |
|
|
|
|
|
class InceptionStem(TheseusLayer): |
|
def __init__(self): |
|
super().__init__() |
|
self.conv_1a_3x3 = ConvBNLayer( |
|
num_channels=3, num_filters=32, filter_size=3, stride=2, act="relu") |
|
self.conv_2a_3x3 = ConvBNLayer( |
|
num_channels=32, |
|
num_filters=32, |
|
filter_size=3, |
|
stride=1, |
|
act="relu") |
|
self.conv_2b_3x3 = ConvBNLayer( |
|
num_channels=32, |
|
num_filters=64, |
|
filter_size=3, |
|
padding=1, |
|
act="relu") |
|
|
|
self.max_pool = MaxPool2D(kernel_size=3, stride=2, padding=0) |
|
self.conv_3b_1x1 = ConvBNLayer( |
|
num_channels=64, num_filters=80, filter_size=1, act="relu") |
|
self.conv_4a_3x3 = ConvBNLayer( |
|
num_channels=80, num_filters=192, filter_size=3, act="relu") |
|
|
|
def forward(self, x): |
|
x = self.conv_1a_3x3(x) |
|
x = self.conv_2a_3x3(x) |
|
x = self.conv_2b_3x3(x) |
|
x = self.max_pool(x) |
|
x = self.conv_3b_1x1(x) |
|
x = self.conv_4a_3x3(x) |
|
x = self.max_pool(x) |
|
return x |
|
|
|
|
|
class InceptionA(TheseusLayer): |
|
def __init__(self, num_channels, pool_features): |
|
super().__init__() |
|
self.branch1x1 = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=64, |
|
filter_size=1, |
|
act="relu") |
|
self.branch5x5_1 = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=48, |
|
filter_size=1, |
|
act="relu") |
|
self.branch5x5_2 = ConvBNLayer( |
|
num_channels=48, |
|
num_filters=64, |
|
filter_size=5, |
|
padding=2, |
|
act="relu") |
|
|
|
self.branch3x3dbl_1 = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=64, |
|
filter_size=1, |
|
act="relu") |
|
self.branch3x3dbl_2 = ConvBNLayer( |
|
num_channels=64, |
|
num_filters=96, |
|
filter_size=3, |
|
padding=1, |
|
act="relu") |
|
self.branch3x3dbl_3 = ConvBNLayer( |
|
num_channels=96, |
|
num_filters=96, |
|
filter_size=3, |
|
padding=1, |
|
act="relu") |
|
self.branch_pool = AvgPool2D( |
|
kernel_size=3, stride=1, padding=1, exclusive=False) |
|
self.branch_pool_conv = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=pool_features, |
|
filter_size=1, |
|
act="relu") |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
branch5x5 = self.branch5x5_1(x) |
|
branch5x5 = self.branch5x5_2(branch5x5) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) |
|
|
|
branch_pool = self.branch_pool(x) |
|
branch_pool = self.branch_pool_conv(branch_pool) |
|
x = paddle.concat( |
|
[branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=1) |
|
return x |
|
|
|
|
|
class InceptionB(TheseusLayer): |
|
def __init__(self, num_channels): |
|
super().__init__() |
|
self.branch3x3 = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=384, |
|
filter_size=3, |
|
stride=2, |
|
act="relu") |
|
self.branch3x3dbl_1 = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=64, |
|
filter_size=1, |
|
act="relu") |
|
self.branch3x3dbl_2 = ConvBNLayer( |
|
num_channels=64, |
|
num_filters=96, |
|
filter_size=3, |
|
padding=1, |
|
act="relu") |
|
self.branch3x3dbl_3 = ConvBNLayer( |
|
num_channels=96, |
|
num_filters=96, |
|
filter_size=3, |
|
stride=2, |
|
act="relu") |
|
self.branch_pool = MaxPool2D(kernel_size=3, stride=2) |
|
|
|
def forward(self, x): |
|
branch3x3 = self.branch3x3(x) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) |
|
|
|
branch_pool = self.branch_pool(x) |
|
|
|
x = paddle.concat([branch3x3, branch3x3dbl, branch_pool], axis=1) |
|
|
|
return x |
|
|
|
|
|
class InceptionC(TheseusLayer): |
|
def __init__(self, num_channels, channels_7x7): |
|
super().__init__() |
|
self.branch1x1 = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=192, |
|
filter_size=1, |
|
act="relu") |
|
|
|
self.branch7x7_1 = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=channels_7x7, |
|
filter_size=1, |
|
stride=1, |
|
act="relu") |
|
self.branch7x7_2 = ConvBNLayer( |
|
num_channels=channels_7x7, |
|
num_filters=channels_7x7, |
|
filter_size=(1, 7), |
|
stride=1, |
|
padding=(0, 3), |
|
act="relu") |
|
self.branch7x7_3 = ConvBNLayer( |
|
num_channels=channels_7x7, |
|
num_filters=192, |
|
filter_size=(7, 1), |
|
stride=1, |
|
padding=(3, 0), |
|
act="relu") |
|
|
|
self.branch7x7dbl_1 = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=channels_7x7, |
|
filter_size=1, |
|
act="relu") |
|
self.branch7x7dbl_2 = ConvBNLayer( |
|
num_channels=channels_7x7, |
|
num_filters=channels_7x7, |
|
filter_size=(7, 1), |
|
padding=(3, 0), |
|
act="relu") |
|
self.branch7x7dbl_3 = ConvBNLayer( |
|
num_channels=channels_7x7, |
|
num_filters=channels_7x7, |
|
filter_size=(1, 7), |
|
padding=(0, 3), |
|
act="relu") |
|
self.branch7x7dbl_4 = ConvBNLayer( |
|
num_channels=channels_7x7, |
|
num_filters=channels_7x7, |
|
filter_size=(7, 1), |
|
padding=(3, 0), |
|
act="relu") |
|
self.branch7x7dbl_5 = ConvBNLayer( |
|
num_channels=channels_7x7, |
|
num_filters=192, |
|
filter_size=(1, 7), |
|
padding=(0, 3), |
|
act="relu") |
|
|
|
self.branch_pool = AvgPool2D( |
|
kernel_size=3, stride=1, padding=1, exclusive=False) |
|
self.branch_pool_conv = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=192, |
|
filter_size=1, |
|
act="relu") |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch7x7 = self.branch7x7_1(x) |
|
branch7x7 = self.branch7x7_2(branch7x7) |
|
branch7x7 = self.branch7x7_3(branch7x7) |
|
|
|
branch7x7dbl = self.branch7x7dbl_1(x) |
|
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) |
|
|
|
branch_pool = self.branch_pool(x) |
|
branch_pool = self.branch_pool_conv(branch_pool) |
|
|
|
x = paddle.concat( |
|
[branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=1) |
|
|
|
return x |
|
|
|
|
|
class InceptionD(TheseusLayer): |
|
def __init__(self, num_channels): |
|
super().__init__() |
|
self.branch3x3_1 = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=192, |
|
filter_size=1, |
|
act="relu") |
|
self.branch3x3_2 = ConvBNLayer( |
|
num_channels=192, |
|
num_filters=320, |
|
filter_size=3, |
|
stride=2, |
|
act="relu") |
|
self.branch7x7x3_1 = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=192, |
|
filter_size=1, |
|
act="relu") |
|
self.branch7x7x3_2 = ConvBNLayer( |
|
num_channels=192, |
|
num_filters=192, |
|
filter_size=(1, 7), |
|
padding=(0, 3), |
|
act="relu") |
|
self.branch7x7x3_3 = ConvBNLayer( |
|
num_channels=192, |
|
num_filters=192, |
|
filter_size=(7, 1), |
|
padding=(3, 0), |
|
act="relu") |
|
self.branch7x7x3_4 = ConvBNLayer( |
|
num_channels=192, |
|
num_filters=192, |
|
filter_size=3, |
|
stride=2, |
|
act="relu") |
|
self.branch_pool = MaxPool2D(kernel_size=3, stride=2) |
|
|
|
def forward(self, x): |
|
branch3x3 = self.branch3x3_1(x) |
|
branch3x3 = self.branch3x3_2(branch3x3) |
|
|
|
branch7x7x3 = self.branch7x7x3_1(x) |
|
branch7x7x3 = self.branch7x7x3_2(branch7x7x3) |
|
branch7x7x3 = self.branch7x7x3_3(branch7x7x3) |
|
branch7x7x3 = self.branch7x7x3_4(branch7x7x3) |
|
|
|
branch_pool = self.branch_pool(x) |
|
|
|
x = paddle.concat([branch3x3, branch7x7x3, branch_pool], axis=1) |
|
return x |
|
|
|
|
|
class InceptionE(TheseusLayer): |
|
def __init__(self, num_channels): |
|
super().__init__() |
|
self.branch1x1 = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=320, |
|
filter_size=1, |
|
act="relu") |
|
self.branch3x3_1 = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=384, |
|
filter_size=1, |
|
act="relu") |
|
self.branch3x3_2a = ConvBNLayer( |
|
num_channels=384, |
|
num_filters=384, |
|
filter_size=(1, 3), |
|
padding=(0, 1), |
|
act="relu") |
|
self.branch3x3_2b = ConvBNLayer( |
|
num_channels=384, |
|
num_filters=384, |
|
filter_size=(3, 1), |
|
padding=(1, 0), |
|
act="relu") |
|
|
|
self.branch3x3dbl_1 = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=448, |
|
filter_size=1, |
|
act="relu") |
|
self.branch3x3dbl_2 = ConvBNLayer( |
|
num_channels=448, |
|
num_filters=384, |
|
filter_size=3, |
|
padding=1, |
|
act="relu") |
|
self.branch3x3dbl_3a = ConvBNLayer( |
|
num_channels=384, |
|
num_filters=384, |
|
filter_size=(1, 3), |
|
padding=(0, 1), |
|
act="relu") |
|
self.branch3x3dbl_3b = ConvBNLayer( |
|
num_channels=384, |
|
num_filters=384, |
|
filter_size=(3, 1), |
|
padding=(1, 0), |
|
act="relu") |
|
self.branch_pool = AvgPool2D( |
|
kernel_size=3, stride=1, padding=1, exclusive=False) |
|
self.branch_pool_conv = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=192, |
|
filter_size=1, |
|
act="relu") |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch3x3 = self.branch3x3_1(x) |
|
branch3x3 = [ |
|
self.branch3x3_2a(branch3x3), |
|
self.branch3x3_2b(branch3x3), |
|
] |
|
branch3x3 = paddle.concat(branch3x3, axis=1) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = [ |
|
self.branch3x3dbl_3a(branch3x3dbl), |
|
self.branch3x3dbl_3b(branch3x3dbl), |
|
] |
|
branch3x3dbl = paddle.concat(branch3x3dbl, axis=1) |
|
|
|
branch_pool = self.branch_pool(x) |
|
branch_pool = self.branch_pool_conv(branch_pool) |
|
|
|
x = paddle.concat( |
|
[branch1x1, branch3x3, branch3x3dbl, branch_pool], axis=1) |
|
return x |
|
|
|
|
|
class Inception_V3(TheseusLayer): |
|
""" |
|
Inception_V3 |
|
Args: |
|
config: dict. config of Inception_V3. |
|
class_num: int=1000. The number of classes. |
|
pretrained: (True or False) or path of pretrained_model. Whether to load the pretrained model. |
|
Returns: |
|
model: nn.Layer. Specific Inception_V3 model depends on args. |
|
""" |
|
|
|
def __init__(self, |
|
config, |
|
stages_pattern, |
|
class_num=1000, |
|
return_patterns=None, |
|
return_stages=None): |
|
super().__init__() |
|
|
|
self.inception_a_list = config["inception_a"] |
|
self.inception_c_list = config["inception_c"] |
|
self.inception_b_list = config["inception_b"] |
|
self.inception_d_list = config["inception_d"] |
|
self.inception_e_list = config["inception_e"] |
|
|
|
self.inception_stem = InceptionStem() |
|
|
|
self.inception_block_list = nn.LayerList() |
|
for i in range(len(self.inception_a_list[0])): |
|
inception_a = InceptionA(self.inception_a_list[0][i], |
|
self.inception_a_list[1][i]) |
|
self.inception_block_list.append(inception_a) |
|
|
|
for i in range(len(self.inception_b_list)): |
|
inception_b = InceptionB(self.inception_b_list[i]) |
|
self.inception_block_list.append(inception_b) |
|
|
|
for i in range(len(self.inception_c_list[0])): |
|
inception_c = InceptionC(self.inception_c_list[0][i], |
|
self.inception_c_list[1][i]) |
|
self.inception_block_list.append(inception_c) |
|
|
|
for i in range(len(self.inception_d_list)): |
|
inception_d = InceptionD(self.inception_d_list[i]) |
|
self.inception_block_list.append(inception_d) |
|
|
|
for i in range(len(self.inception_e_list)): |
|
inception_e = InceptionE(self.inception_e_list[i]) |
|
self.inception_block_list.append(inception_e) |
|
|
|
self.avg_pool = AdaptiveAvgPool2D(1) |
|
self.dropout = Dropout(p=0.2, mode="downscale_in_infer") |
|
stdv = 1.0 / math.sqrt(2048 * 1.0) |
|
self.fc = Linear( |
|
2048, |
|
class_num, |
|
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)), |
|
bias_attr=ParamAttr()) |
|
|
|
super().init_res( |
|
stages_pattern, |
|
return_patterns=return_patterns, |
|
return_stages=return_stages) |
|
|
|
def forward(self, x): |
|
x = self.inception_stem(x) |
|
for inception_block in self.inception_block_list: |
|
x = inception_block(x) |
|
x = self.avg_pool(x) |
|
x = paddle.reshape(x, shape=[-1, 2048]) |
|
x = self.dropout(x) |
|
x = self.fc(x) |
|
return x |
|
|
|
|
|
def _load_pretrained(pretrained, model, model_url, use_ssld): |
|
if pretrained is False: |
|
pass |
|
elif pretrained is True: |
|
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld) |
|
elif isinstance(pretrained, str): |
|
load_dygraph_pretrain(model, pretrained) |
|
else: |
|
raise RuntimeError( |
|
"pretrained type is not available. Please use `string` or `boolean` type." |
|
) |
|
|
|
|
|
def InceptionV3(pretrained=False, use_ssld=False, **kwargs): |
|
""" |
|
InceptionV3 |
|
Args: |
|
pretrained: bool=false or str. if `true` load pretrained parameters, `false` otherwise. |
|
if str, means the path of the pretrained model. |
|
use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True. |
|
Returns: |
|
model: nn.Layer. Specific `InceptionV3` model |
|
""" |
|
model = Inception_V3( |
|
NET_CONFIG, |
|
stages_pattern=MODEL_STAGES_PATTERN["InceptionV3"], |
|
**kwargs) |
|
_load_pretrained(pretrained, model, MODEL_URLS["InceptionV3"], use_ssld) |
|
return model
|
|
|