You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

274 lines
11 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path as osp
import tempfile
import paddlers as pdrs
import paddlers.transforms as T
from testing_utils import CommonTest
class TestSegSliderPredict(CommonTest):
def setUp(self):
self.model = pdrs.tasks.seg.UNet(in_channels=10)
self.transforms = T.Compose([
T.DecodeImg(), T.Normalize([0.5] * 10, [0.5] * 10),
T.ArrangeSegmenter('test')
])
self.image_path = "data/ssst/multispectral.tif"
self.basename = osp.basename(self.image_path)
def test_blocksize_and_overlap_whole(self):
# Original image size (256, 256)
with tempfile.TemporaryDirectory() as td:
# Whole-image inference using predict()
pred_whole = self.model.predict(self.image_path, self.transforms)
pred_whole = pred_whole['label_map']
# Whole-image inference using slider_predict()
save_dir = osp.join(td, 'pred1')
self.model.slider_predict(self.image_path, save_dir, 256, 0,
self.transforms)
pred1 = T.decode_image(
osp.join(save_dir, self.basename),
to_uint8=False,
decode_sar=False)
self.check_output_equal(pred1.shape, pred_whole.shape)
# `block_size` == `overlap`
save_dir = osp.join(td, 'pred2')
with self.assertRaises(ValueError):
self.model.slider_predict(self.image_path, save_dir, 128, 128,
self.transforms)
# `block_size` is a tuple
save_dir = osp.join(td, 'pred3')
self.model.slider_predict(self.image_path, save_dir, (128, 32), 0,
self.transforms)
pred3 = T.decode_image(
osp.join(save_dir, self.basename),
to_uint8=False,
decode_sar=False)
self.check_output_equal(pred3.shape, pred_whole.shape)
# `block_size` and `overlap` are both tuples
save_dir = osp.join(td, 'pred4')
self.model.slider_predict(self.image_path, save_dir, (128, 100),
(10, 5), self.transforms)
pred4 = T.decode_image(
osp.join(save_dir, self.basename),
to_uint8=False,
decode_sar=False)
self.check_output_equal(pred4.shape, pred_whole.shape)
# `block_size` larger than image size
save_dir = osp.join(td, 'pred5')
self.model.slider_predict(self.image_path, save_dir, 512, 0,
self.transforms)
pred5 = T.decode_image(
osp.join(save_dir, self.basename),
to_uint8=False,
decode_sar=False)
self.check_output_equal(pred5.shape, pred_whole.shape)
def test_merge_strategy(self):
with tempfile.TemporaryDirectory() as td:
# Whole-image inference using predict()
pred_whole = self.model.predict(self.image_path, self.transforms)
pred_whole = pred_whole['label_map']
# 'keep_first'
save_dir = osp.join(td, 'keep_first')
self.model.slider_predict(
self.image_path,
save_dir,
128,
64,
self.transforms,
merge_strategy='keep_first')
pred_keepfirst = T.decode_image(
osp.join(save_dir, self.basename),
to_uint8=False,
decode_sar=False)
self.check_output_equal(pred_keepfirst.shape, pred_whole.shape)
# 'keep_last'
save_dir = osp.join(td, 'keep_last')
self.model.slider_predict(
self.image_path,
save_dir,
128,
64,
self.transforms,
merge_strategy='keep_last')
pred_keeplast = T.decode_image(
osp.join(save_dir, self.basename),
to_uint8=False,
decode_sar=False)
self.check_output_equal(pred_keeplast.shape, pred_whole.shape)
# 'vote'
save_dir = osp.join(td, 'vote')
self.model.slider_predict(
self.image_path,
save_dir,
128,
64,
self.transforms,
merge_strategy='vote')
pred_vote = T.decode_image(
osp.join(save_dir, self.basename),
to_uint8=False,
decode_sar=False)
self.check_output_equal(pred_vote.shape, pred_whole.shape)
def test_geo_info(self):
with tempfile.TemporaryDirectory() as td:
_, geo_info_in = T.decode_image(self.image_path, read_geo_info=True)
self.model.slider_predict(self.image_path, td, 128, 0,
self.transforms)
_, geo_info_out = T.decode_image(
osp.join(td, self.basename), read_geo_info=True)
self.assertEqual(geo_info_out['geo_trans'],
geo_info_in['geo_trans'])
self.assertEqual(geo_info_out['geo_proj'], geo_info_in['geo_proj'])
class TestCDSliderPredict(CommonTest):
def setUp(self):
self.model = pdrs.tasks.cd.BIT(in_channels=10)
self.transforms = T.Compose([
T.DecodeImg(), T.Normalize([0.5] * 10, [0.5] * 10),
T.ArrangeChangeDetector('test')
])
self.image_paths = ("data/ssmt/multispectral_t1.tif",
"data/ssmt/multispectral_t2.tif")
self.basename = osp.basename(self.image_paths[0])
def test_blocksize_and_overlap_whole(self):
# Original image size (256, 256)
with tempfile.TemporaryDirectory() as td:
# Whole-image inference using predict()
pred_whole = self.model.predict(self.image_paths, self.transforms)
pred_whole = pred_whole['label_map']
# Whole-image inference using slider_predict()
save_dir = osp.join(td, 'pred1')
self.model.slider_predict(self.image_paths, save_dir, 256, 0,
self.transforms)
pred1 = T.decode_image(
osp.join(save_dir, self.basename),
to_uint8=False,
decode_sar=False)
self.check_output_equal(pred1.shape, pred_whole.shape)
# `block_size` == `overlap`
save_dir = osp.join(td, 'pred2')
with self.assertRaises(ValueError):
self.model.slider_predict(self.image_paths, save_dir, 128, 128,
self.transforms)
# `block_size` is a tuple
save_dir = osp.join(td, 'pred3')
self.model.slider_predict(self.image_paths, save_dir, (128, 32), 0,
self.transforms)
pred3 = T.decode_image(
osp.join(save_dir, self.basename),
to_uint8=False,
decode_sar=False)
self.check_output_equal(pred3.shape, pred_whole.shape)
# `block_size` and `overlap` are both tuples
save_dir = osp.join(td, 'pred4')
self.model.slider_predict(self.image_paths, save_dir, (128, 100),
(10, 5), self.transforms)
pred4 = T.decode_image(
osp.join(save_dir, self.basename),
to_uint8=False,
decode_sar=False)
self.check_output_equal(pred4.shape, pred_whole.shape)
# `block_size` larger than image size
save_dir = osp.join(td, 'pred5')
self.model.slider_predict(self.image_paths, save_dir, 512, 0,
self.transforms)
pred5 = T.decode_image(
osp.join(save_dir, self.basename),
to_uint8=False,
decode_sar=False)
self.check_output_equal(pred5.shape, pred_whole.shape)
def test_merge_strategy(self):
with tempfile.TemporaryDirectory() as td:
# Whole-image inference using predict()
pred_whole = self.model.predict(self.image_paths, self.transforms)
pred_whole = pred_whole['label_map']
# 'keep_first'
save_dir = osp.join(td, 'keep_first')
self.model.slider_predict(
self.image_paths,
save_dir,
128,
64,
self.transforms,
merge_strategy='keep_first')
pred_keepfirst = T.decode_image(
osp.join(save_dir, self.basename),
to_uint8=False,
decode_sar=False)
self.check_output_equal(pred_keepfirst.shape, pred_whole.shape)
# 'keep_last'
save_dir = osp.join(td, 'keep_last')
self.model.slider_predict(
self.image_paths,
save_dir,
128,
64,
self.transforms,
merge_strategy='keep_last')
pred_keeplast = T.decode_image(
osp.join(save_dir, self.basename),
to_uint8=False,
decode_sar=False)
self.check_output_equal(pred_keeplast.shape, pred_whole.shape)
# 'vote'
save_dir = osp.join(td, 'vote')
self.model.slider_predict(
self.image_paths,
save_dir,
128,
64,
self.transforms,
merge_strategy='vote')
pred_vote = T.decode_image(
osp.join(save_dir, self.basename),
to_uint8=False,
decode_sar=False)
self.check_output_equal(pred_vote.shape, pred_whole.shape)
def test_geo_info(self):
with tempfile.TemporaryDirectory() as td:
_, geo_info_in = T.decode_image(
self.image_paths[0], read_geo_info=True)
self.model.slider_predict(self.image_paths, td, 128, 0,
self.transforms)
_, geo_info_out = T.decode_image(
osp.join(td, self.basename), read_geo_info=True)
self.assertEqual(geo_info_out['geo_trans'],
geo_info_in['geo_trans'])
self.assertEqual(geo_info_out['geo_proj'], geo_info_in['geo_proj'])