You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

350 lines
12 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import math
import paddle
import paddle.nn as nn
import paddle.optimizer as optimizer
import paddle.regularizer as regularizer
from paddlers.models.ppdet.core.workspace import register, serializable
import copy
from .adamw import AdamWDL, build_adamwdl
__all__ = ['LearningRate', 'OptimizerBuilder']
from paddlers.models.ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
@serializable
class CosineDecay(object):
"""
Cosine learning rate decay
Args:
max_epochs (int): max epochs for the training process.
if you commbine cosine decay with warmup, it is recommended that
the max_iters is much larger than the warmup iter
use_warmup (bool): whether to use warmup. Default: True.
min_lr_ratio (float): minimum learning rate ratio. Default: 0.
last_plateau_epochs (int): use minimum learning rate in
the last few epochs. Default: 0.
"""
def __init__(self,
max_epochs=1000,
use_warmup=True,
min_lr_ratio=0.,
last_plateau_epochs=0):
self.max_epochs = max_epochs
self.use_warmup = use_warmup
self.min_lr_ratio = min_lr_ratio
self.last_plateau_epochs = last_plateau_epochs
def __call__(self,
base_lr=None,
boundary=None,
value=None,
step_per_epoch=None):
assert base_lr is not None, "either base LR or values should be provided"
max_iters = self.max_epochs * int(step_per_epoch)
last_plateau_iters = self.last_plateau_epochs * int(step_per_epoch)
min_lr = base_lr * self.min_lr_ratio
if boundary is not None and value is not None and self.use_warmup:
# use warmup
warmup_iters = len(boundary)
for i in range(int(boundary[-1]), max_iters):
boundary.append(i)
if i < max_iters - last_plateau_iters:
decayed_lr = min_lr + (base_lr - min_lr) * 0.5 * (math.cos(
(i - warmup_iters) * math.pi /
(max_iters - warmup_iters - last_plateau_iters)) + 1)
value.append(decayed_lr)
else:
value.append(min_lr)
return optimizer.lr.PiecewiseDecay(boundary, value)
elif last_plateau_iters > 0:
# not use warmup, but set `last_plateau_epochs` > 0
boundary = []
value = []
for i in range(max_iters):
if i < max_iters - last_plateau_iters:
decayed_lr = min_lr + (base_lr - min_lr) * 0.5 * (math.cos(
i * math.pi / (max_iters - last_plateau_iters)) + 1)
value.append(decayed_lr)
else:
value.append(min_lr)
if i > 0:
boundary.append(i)
return optimizer.lr.PiecewiseDecay(boundary, value)
return optimizer.lr.CosineAnnealingDecay(
base_lr, T_max=max_iters, eta_min=min_lr)
@serializable
class PiecewiseDecay(object):
"""
Multi step learning rate decay
Args:
gamma (float | list): decay factor
milestones (list): steps at which to decay learning rate
"""
def __init__(self,
gamma=[0.1, 0.01],
milestones=[8, 11],
values=None,
use_warmup=True):
super(PiecewiseDecay, self).__init__()
if type(gamma) is not list:
self.gamma = []
for i in range(len(milestones)):
self.gamma.append(gamma / 10**i)
else:
self.gamma = gamma
self.milestones = milestones
self.values = values
self.use_warmup = use_warmup
def __call__(self,
base_lr=None,
boundary=None,
value=None,
step_per_epoch=None):
if boundary is not None and self.use_warmup:
boundary.extend([int(step_per_epoch) * i for i in self.milestones])
else:
# do not use LinearWarmup
boundary = [int(step_per_epoch) * i for i in self.milestones]
value = [base_lr] # during step[0, boundary[0]] is base_lr
# self.values is setted directly in config
if self.values is not None:
assert len(self.milestones) + 1 == len(self.values)
return optimizer.lr.PiecewiseDecay(boundary, self.values)
# value is computed by self.gamma
value = value if value is not None else [base_lr]
for i in self.gamma:
value.append(base_lr * i)
return optimizer.lr.PiecewiseDecay(boundary, value)
@serializable
class LinearWarmup(object):
"""
Warm up learning rate linearly
Args:
steps (int): warm up steps
start_factor (float): initial learning rate factor
epochs (int|None): use epochs as warm up steps, the priority
of `epochs` is higher than `steps`. Default: None.
"""
def __init__(self, steps=500, start_factor=1. / 3, epochs=None):
super(LinearWarmup, self).__init__()
self.steps = steps
self.start_factor = start_factor
self.epochs = epochs
def __call__(self, base_lr, step_per_epoch):
boundary = []
value = []
warmup_steps = self.epochs * step_per_epoch \
if self.epochs is not None else self.steps
warmup_steps = max(warmup_steps, 1)
for i in range(warmup_steps + 1):
if warmup_steps > 0:
alpha = i / warmup_steps
factor = self.start_factor * (1 - alpha) + alpha
lr = base_lr * factor
value.append(lr)
if i > 0:
boundary.append(i)
return boundary, value
@serializable
class ExpWarmup(object):
"""
Warm up learning rate in exponential mode
Args:
steps (int): warm up steps.
epochs (int|None): use epochs as warm up steps, the priority
of `epochs` is higher than `steps`. Default: None.
power (int): Exponential coefficient. Default: 2.
"""
def __init__(self, steps=1000, epochs=None, power=2):
super(ExpWarmup, self).__init__()
self.steps = steps
self.epochs = epochs
self.power = power
def __call__(self, base_lr, step_per_epoch):
boundary = []
value = []
warmup_steps = self.epochs * step_per_epoch if self.epochs is not None else self.steps
warmup_steps = max(warmup_steps, 1)
for i in range(warmup_steps + 1):
factor = (i / float(warmup_steps))**self.power
value.append(base_lr * factor)
if i > 0:
boundary.append(i)
return boundary, value
@register
class LearningRate(object):
"""
Learning Rate configuration
Args:
base_lr (float): base learning rate
schedulers (list): learning rate schedulers
"""
__category__ = 'optim'
def __init__(self,
base_lr=0.01,
schedulers=[PiecewiseDecay(), LinearWarmup()]):
super(LearningRate, self).__init__()
self.base_lr = base_lr
self.schedulers = []
schedulers = copy.deepcopy(schedulers)
for sched in schedulers:
if isinstance(sched, dict):
# support dict sched instantiate
module = sys.modules[__name__]
type = sched.pop("name")
scheduler = getattr(module, type)(**sched)
self.schedulers.append(scheduler)
else:
self.schedulers.append(sched)
def __call__(self, step_per_epoch):
assert len(self.schedulers) >= 1
if not self.schedulers[0].use_warmup:
return self.schedulers[0](base_lr=self.base_lr,
step_per_epoch=step_per_epoch)
# TODO: split warmup & decay
# warmup
boundary, value = self.schedulers[1](self.base_lr, step_per_epoch)
# decay
decay_lr = self.schedulers[0](self.base_lr, boundary, value,
step_per_epoch)
return decay_lr
@register
class OptimizerBuilder():
"""
Build optimizer handles
Args:
regularizer (object): an `Regularizer` instance
optimizer (object): an `Optimizer` instance
"""
__category__ = 'optim'
def __init__(self,
clip_grad_by_norm=None,
regularizer={'type': 'L2',
'factor': .0001},
optimizer={'type': 'Momentum',
'momentum': .9}):
self.clip_grad_by_norm = clip_grad_by_norm
self.regularizer = regularizer
self.optimizer = optimizer
def __call__(self, learning_rate, model=None):
if self.clip_grad_by_norm is not None:
grad_clip = nn.ClipGradByGlobalNorm(
clip_norm=self.clip_grad_by_norm)
else:
grad_clip = None
if self.regularizer and self.regularizer != 'None':
reg_type = self.regularizer['type'] + 'Decay'
reg_factor = self.regularizer['factor']
regularization = getattr(regularizer, reg_type)(reg_factor)
else:
regularization = None
optim_args = self.optimizer.copy()
optim_type = optim_args['type']
del optim_args['type']
if optim_type == 'AdamWDL':
return build_adamwdl(model, lr=learning_rate, **optim_args)
if optim_type != 'AdamW':
optim_args['weight_decay'] = regularization
op = getattr(optimizer, optim_type)
if 'param_groups' in optim_args:
assert isinstance(optim_args['param_groups'], list), ''
param_groups = optim_args.pop('param_groups')
params, visited = [], []
for group in param_groups:
assert isinstance(group,
dict) and 'params' in group and isinstance(
group['params'], list), ''
_params = {
n: p
for n, p in model.named_parameters()
if any([k in n
for k in group['params']]) and p.trainable is True
}
_group = group.copy()
_group.update({'params': list(_params.values())})
params.append(_group)
visited.extend(list(_params.keys()))
ext_params = [
p for n, p in model.named_parameters()
if n not in visited and p.trainable is True
]
if len(ext_params) < len(model.parameters()):
params.append({'params': ext_params})
elif len(ext_params) > len(model.parameters()):
raise RuntimeError
else:
_params = model.parameters()
params = [param for param in _params if param.trainable is True]
return op(learning_rate=learning_rate,
parameters=params,
grad_clip=grad_clip,
**optim_args)