You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
379 lines
14 KiB
379 lines
14 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import |
|
import copy |
|
import os |
|
import os.path as osp |
|
import random |
|
from collections import OrderedDict |
|
|
|
import numpy as np |
|
|
|
from .base import BaseDataset |
|
from paddlers.utils import logging, get_encoding, norm_path, is_pic |
|
from paddlers.transforms import DecodeImg, MixupImage |
|
from paddlers.tools import YOLOAnchorCluster |
|
|
|
|
|
class COCODetDataset(BaseDataset): |
|
""" |
|
Dataset with COCO annotations for detection tasks. |
|
|
|
Args: |
|
data_dir (str): Root directory of the dataset. |
|
image_dir (str): Directory that contains the images. |
|
ann_path (str): Path to COCO annotations. |
|
transforms (paddlers.transforms.Compose): Data preprocessing and data augmentation operators to apply. |
|
label_list (str|None, optional): Path of the file that contains the category names. Defaults to None. |
|
num_workers (int|str, optional): Number of processes used for data loading. If `num_workers` is 'auto', |
|
the number of workers will be automatically determined according to the number of CPU cores: If |
|
there are more than 16 cores,8 workers will be used. Otherwise, the number of workers will be half |
|
the number of CPU cores. Defaults: 'auto'. |
|
shuffle (bool, optional): Whether to shuffle the samples. Defaults to False. |
|
allow_empty (bool, optional): Whether to add negative samples. Defaults to False. |
|
empty_ratio (float, optional): Ratio of negative samples. If `empty_ratio` is smaller than 0 or not less |
|
than 1, keep all generated negative samples. Defaults to 1.0. |
|
""" |
|
|
|
def __init__(self, |
|
data_dir, |
|
image_dir, |
|
anno_path, |
|
transforms, |
|
label_list, |
|
num_workers='auto', |
|
shuffle=False, |
|
allow_empty=False, |
|
empty_ratio=1.): |
|
# matplotlib.use() must be called *before* pylab, matplotlib.pyplot, |
|
# or matplotlib.backends is imported for the first time. |
|
import matplotlib |
|
matplotlib.use('Agg') |
|
from pycocotools.coco import COCO |
|
|
|
super(COCODetDataset, self).__init__(data_dir, label_list, transforms, |
|
num_workers, shuffle) |
|
|
|
self.data_fields = None |
|
self.num_max_boxes = 50 |
|
|
|
self.use_mix = False |
|
if self.transforms is not None: |
|
for op in self.transforms.transforms: |
|
if isinstance(op, MixupImage): |
|
self.mixup_op = copy.deepcopy(op) |
|
self.use_mix = True |
|
self.num_max_boxes *= 2 |
|
break |
|
|
|
self.batch_transforms = None |
|
self.allow_empty = allow_empty |
|
self.empty_ratio = empty_ratio |
|
self.file_list = list() |
|
neg_file_list = list() |
|
self.labels = list() |
|
|
|
annotations = dict() |
|
annotations['images'] = list() |
|
annotations['categories'] = list() |
|
annotations['annotations'] = list() |
|
|
|
cname2cid = OrderedDict() |
|
label_id = 0 |
|
with open(label_list, 'r', encoding=get_encoding(label_list)) as f: |
|
for line in f.readlines(): |
|
cname2cid[line.strip()] = label_id |
|
label_id += 1 |
|
self.labels.append(line.strip()) |
|
|
|
for k, v in cname2cid.items(): |
|
annotations['categories'].append({ |
|
'supercategory': 'component', |
|
'id': v + 1, |
|
'name': k |
|
}) |
|
|
|
anno_path = norm_path(os.path.join(self.data_dir, anno_path)) |
|
image_dir = norm_path(os.path.join(self.data_dir, image_dir)) |
|
|
|
assert anno_path.endswith('.json'), \ |
|
'invalid coco annotation file: ' + anno_path |
|
from pycocotools.coco import COCO |
|
coco = COCO(anno_path) |
|
img_ids = coco.getImgIds() |
|
img_ids.sort() |
|
cat_ids = coco.getCatIds() |
|
ct = 0 |
|
|
|
catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)}) |
|
cname2cid = dict({ |
|
coco.loadCats(catid)[0]['name']: clsid |
|
for catid, clsid in catid2clsid.items() |
|
}) |
|
|
|
for img_id in img_ids: |
|
img_anno = coco.loadImgs([img_id])[0] |
|
im_fname = img_anno['file_name'] |
|
im_w = float(img_anno['width']) |
|
im_h = float(img_anno['height']) |
|
|
|
im_path = os.path.join(image_dir, |
|
im_fname) if image_dir else im_fname |
|
if not os.path.exists(im_path): |
|
logging.warning('Illegal image file: {}, and it will be ' |
|
'ignored'.format(im_path)) |
|
continue |
|
|
|
if im_w < 0 or im_h < 0: |
|
logging.warning( |
|
'Illegal width: {} or height: {} in annotation, ' |
|
'and im_id: {} will be ignored'.format(im_w, im_h, img_id)) |
|
continue |
|
|
|
im_info = { |
|
'image': im_path, |
|
'im_id': np.array([img_id]), |
|
'image_shape': np.array( |
|
[im_h, im_w], dtype=np.int32) |
|
} |
|
|
|
ins_anno_ids = coco.getAnnIds(imgIds=[img_id], iscrowd=False) |
|
instances = coco.loadAnns(ins_anno_ids) |
|
|
|
is_crowds = [] |
|
gt_classes = [] |
|
gt_bboxs = [] |
|
gt_scores = [] |
|
difficults = [] |
|
|
|
for inst in instances: |
|
# Check gt bbox |
|
if inst.get('ignore', False): |
|
continue |
|
if 'bbox' not in inst.keys(): |
|
continue |
|
else: |
|
if not any(np.array(inst['bbox'])): |
|
continue |
|
|
|
# Read the box |
|
x1, y1, box_w, box_h = inst['bbox'] |
|
x2 = x1 + box_w |
|
y2 = y1 + box_h |
|
eps = 1e-5 |
|
if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps: |
|
inst['clean_bbox'] = [ |
|
round(float(x), 3) for x in [x1, y1, x2, y2] |
|
] |
|
else: |
|
logging.warning( |
|
'Found an invalid bbox in annotations: im_id: {}, ' |
|
'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format( |
|
img_id, float(inst['area']), x1, y1, x2, y2)) |
|
|
|
is_crowds.append([inst['iscrowd']]) |
|
gt_classes.append([inst['category_id']]) |
|
gt_bboxs.append(inst['clean_bbox']) |
|
gt_scores.append([1.]) |
|
difficults.append([0]) |
|
|
|
annotations['annotations'].append({ |
|
'iscrowd': inst['iscrowd'], |
|
'image_id': int(inst['image_id']), |
|
'bbox': inst['clean_bbox'], |
|
'area': inst['area'], |
|
'category_id': inst['category_id'], |
|
'id': inst['id'], |
|
'difficult': 0 |
|
}) |
|
|
|
label_info = { |
|
'is_crowd': np.array(is_crowds), |
|
'gt_class': np.array(gt_classes), |
|
'gt_bbox': np.array(gt_bboxs).astype(np.float32), |
|
'gt_score': np.array(gt_scores).astype(np.float32), |
|
'difficult': np.array(difficults), |
|
} |
|
|
|
if label_info['gt_bbox'].size > 0: |
|
self.file_list.append({ ** im_info, ** label_info}) |
|
annotations['images'].append({ |
|
'height': im_h, |
|
'width': im_w, |
|
'id': int(im_info['im_id']), |
|
'file_name': osp.split(im_info['image'])[1] |
|
}) |
|
else: |
|
neg_file_list.append({ ** im_info, ** label_info}) |
|
ct += 1 |
|
|
|
if self.use_mix: |
|
self.num_max_boxes = max(self.num_max_boxes, 2 * len(instances)) |
|
else: |
|
self.num_max_boxes = max(self.num_max_boxes, len(instances)) |
|
|
|
if not ct: |
|
logging.error( |
|
"No coco record found in %s' % (file_list)", exit=True) |
|
self.pos_num = len(self.file_list) |
|
if self.allow_empty and neg_file_list: |
|
self.file_list += self._sample_empty(neg_file_list) |
|
logging.info( |
|
"{} samples in file {}, including {} positive samples and {} negative samples.". |
|
format( |
|
len(self.file_list), anno_path, self.pos_num, |
|
len(self.file_list) - self.pos_num)) |
|
self.num_samples = len(self.file_list) |
|
self.coco_gt = COCO() |
|
self.coco_gt.dataset = annotations |
|
self.coco_gt.createIndex() |
|
|
|
self._epoch = 0 |
|
|
|
def __getitem__(self, idx): |
|
sample = copy.deepcopy(self.file_list[idx]) |
|
if self.data_fields is not None: |
|
sample = {k: sample[k] for k in self.data_fields} |
|
if self.use_mix and (self.mixup_op.mixup_epoch == -1 or |
|
self._epoch < self.mixup_op.mixup_epoch): |
|
if self.num_samples > 1: |
|
mix_idx = random.randint(1, self.num_samples - 1) |
|
mix_pos = (mix_idx + idx) % self.num_samples |
|
else: |
|
mix_pos = 0 |
|
sample_mix = copy.deepcopy(self.file_list[mix_pos]) |
|
if self.data_fields is not None: |
|
sample_mix = {k: sample_mix[k] for k in self.data_fields} |
|
sample = self.mixup_op(sample=[ |
|
DecodeImg(to_rgb=False)(sample), |
|
DecodeImg(to_rgb=False)(sample_mix) |
|
]) |
|
sample = self.transforms(sample) |
|
return sample |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
def set_epoch(self, epoch_id): |
|
self._epoch = epoch_id |
|
|
|
def cluster_yolo_anchor(self, |
|
num_anchors, |
|
image_size, |
|
cache=True, |
|
cache_path=None, |
|
iters=300, |
|
gen_iters=1000, |
|
thresh=.25): |
|
""" |
|
Cluster YOLO anchors. |
|
|
|
Reference: |
|
https://github.com/ultralytics/yolov5/blob/master/utils/autoanchor.py |
|
|
|
Args: |
|
num_anchors (int): Number of clusters. |
|
image_size (list[int]|int): [h, w] or an int value that corresponds to the shape [image_size, image_size]. |
|
cache (bool, optional): Whether to use cache. Defaults to True. |
|
cache_path (str|None, optional): Path of cache directory. If None, use `dataset.data_dir`. |
|
Defaults to None. |
|
iters (int, optional): Iterations of k-means algorithm. Defaults to 300. |
|
gen_iters (int, optional): Iterations of genetic algorithm. Defaults to 1000. |
|
thresh (float, optional): Anchor scale threshold. Defaults to 0.25. |
|
""" |
|
|
|
if cache_path is None: |
|
cache_path = self.data_dir |
|
cluster = YOLOAnchorCluster( |
|
num_anchors=num_anchors, |
|
dataset=self, |
|
image_size=image_size, |
|
cache=cache, |
|
cache_path=cache_path, |
|
iters=iters, |
|
gen_iters=gen_iters, |
|
thresh=thresh) |
|
anchors = cluster() |
|
return anchors |
|
|
|
def add_negative_samples(self, image_dir, empty_ratio=1): |
|
""" |
|
Generate and add negative samples. |
|
|
|
Args: |
|
image_dir (str): Directory that contains images. |
|
empty_ratio (float|None, optional): Ratio of negative samples. If `empty_ratio` is smaller than |
|
0 or not less than 1, keep all generated negative samples. Defaults to 1.0. |
|
""" |
|
|
|
import cv2 |
|
if not osp.isdir(image_dir): |
|
raise ValueError("{} is not a valid image directory.".format( |
|
image_dir)) |
|
if empty_ratio is not None: |
|
self.empty_ratio = empty_ratio |
|
image_list = os.listdir(image_dir) |
|
max_img_id = max(len(self.file_list) - 1, max(self.coco_gt.getImgIds())) |
|
neg_file_list = list() |
|
for image in image_list: |
|
if not is_pic(image): |
|
continue |
|
gt_bbox = np.zeros((0, 4), dtype=np.float32) |
|
gt_class = np.zeros((0, 1), dtype=np.int32) |
|
gt_score = np.zeros((0, 1), dtype=np.float32) |
|
is_crowd = np.zeros((0, 1), dtype=np.int32) |
|
difficult = np.zeros((0, 1), dtype=np.int32) |
|
|
|
max_img_id += 1 |
|
im_fname = osp.join(image_dir, image) |
|
img_data = cv2.imread(im_fname, cv2.IMREAD_UNCHANGED) |
|
im_h, im_w, im_c = img_data.shape |
|
|
|
im_info = { |
|
'im_id': np.asarray([max_img_id]), |
|
'image_shape': np.array( |
|
[im_h, im_w], dtype=np.int32) |
|
} |
|
label_info = { |
|
'is_crowd': is_crowd, |
|
'gt_class': gt_class, |
|
'gt_bbox': gt_bbox, |
|
'gt_score': gt_score, |
|
'difficult': difficult |
|
} |
|
if 'gt_poly' in self.file_list[0]: |
|
label_info['gt_poly'] = [] |
|
|
|
neg_file_list.append({'image': im_fname, ** im_info, ** label_info}) |
|
if neg_file_list: |
|
self.allow_empty = True |
|
self.file_list += self._sample_empty(neg_file_list) |
|
logging.info( |
|
"{} negative samples added. Dataset contains {} positive samples and {} negative samples.". |
|
format( |
|
len(self.file_list) - self.num_samples, self.pos_num, |
|
len(self.file_list) - self.pos_num)) |
|
self.num_samples = len(self.file_list) |
|
|
|
def _sample_empty(self, neg_file_list): |
|
if 0. <= self.empty_ratio < 1.: |
|
import random |
|
total_num = len(self.file_list) |
|
neg_num = total_num - self.pos_num |
|
sample_num = min((total_num * self.empty_ratio - neg_num) // |
|
(1 - self.empty_ratio), len(neg_file_list)) |
|
return random.sample(neg_file_list, sample_num) |
|
else: |
|
return neg_file_list
|
|
|