You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
111 lines
3.4 KiB
111 lines
3.4 KiB
#!/usr/bin/env bash |
|
|
|
import os.path as osp |
|
|
|
import paddle |
|
import paddlers as pdrs |
|
from paddlers import transforms as T |
|
|
|
from custom_model import CustomModel |
|
from custom_trainer import make_trainer |
|
|
|
# 数据集路径 |
|
DATA_DIR = 'data/levircd/' |
|
# 保存实验结果的路径 |
|
EXP_DIR = 'exp/levircd/custom_model/' |
|
|
|
# 定义训练和验证时使用的数据变换(数据增强、预处理等) |
|
# 使用Compose组合多种变换方式。Compose中包含的变换将按顺序串行执行 |
|
# API说明:https://github.com/PaddlePaddle/PaddleRS/blob/develop/docs/apis/data.md |
|
train_transforms = T.Compose([ |
|
# 读取影像 |
|
T.DecodeImg(), |
|
# 随机翻转和旋转 |
|
T.RandomFlipOrRotate( |
|
# 以0.35的概率执行随机翻转,0.35的概率执行随机旋转 |
|
probs=[0.35, 0.35], |
|
# 以0.5的概率执行随机水平翻转,0.5的概率执行随机垂直翻转 |
|
probsf=[0.5, 0.5, 0, 0, 0], |
|
# 分别以0.33、0.34和0.33的概率执行90°、180°和270°旋转 |
|
probsr=[0.33, 0.34, 0.33]), |
|
# 将数据归一化到[-1,1] |
|
T.Normalize( |
|
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
|
T.ArrangeChangeDetector('train') |
|
]) |
|
|
|
eval_transforms = T.Compose([ |
|
T.DecodeImg(), |
|
# 验证阶段与训练阶段的数据归一化方式必须相同 |
|
T.Normalize( |
|
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
|
T.ArrangeChangeDetector('eval') |
|
]) |
|
|
|
# 分别构建训练、验证和测试所用的数据集 |
|
train_dataset = pdrs.datasets.CDDataset( |
|
data_dir=DATA_DIR, |
|
file_list=osp.join(DATA_DIR, 'train.txt'), |
|
label_list=None, |
|
transforms=train_transforms, |
|
num_workers=0, |
|
shuffle=True, |
|
with_seg_labels=False, |
|
binarize_labels=True) |
|
|
|
val_dataset = pdrs.datasets.CDDataset( |
|
data_dir=DATA_DIR, |
|
file_list=osp.join(DATA_DIR, 'val.txt'), |
|
label_list=None, |
|
transforms=eval_transforms, |
|
num_workers=0, |
|
shuffle=False, |
|
with_seg_labels=False, |
|
binarize_labels=True) |
|
|
|
test_dataset = pdrs.datasets.CDDataset( |
|
data_dir=DATA_DIR, |
|
file_list=osp.join(DATA_DIR, 'test.txt'), |
|
label_list=None, |
|
# 与验证阶段使用相同的数据变换算子 |
|
transforms=eval_transforms, |
|
num_workers=0, |
|
shuffle=False, |
|
with_seg_labels=False, |
|
binarize_labels=True) |
|
|
|
# 构建自定义模型CustomModel并为其自动生成训练器 |
|
# make_trainer()的首个参数为模型类型,剩余参数为模型构造所需参数 |
|
model = make_trainer(CustomModel, in_channels=3) |
|
|
|
# 构建学习率调度器 |
|
# 使用定步长学习率衰减策略 |
|
lr_scheduler = paddle.optimizer.lr.StepDecay( |
|
learning_rate=0.002, step_size=35000, gamma=0.2) |
|
|
|
# 构建优化器 |
|
optimizer = paddle.optimizer.Adam( |
|
parameters=model.net.parameters(), learning_rate=lr_scheduler) |
|
|
|
# 执行模型训练 |
|
model.train( |
|
num_epochs=50, |
|
train_dataset=train_dataset, |
|
train_batch_size=8, |
|
eval_dataset=eval_dataset, |
|
# 每多少个epoch验证并保存一次模型 |
|
save_interval_epochs=5, |
|
# 每多少次迭代记录一次日志 |
|
log_interval_steps=50, |
|
save_dir=EXP_DIR, |
|
# 是否使用early stopping策略,当精度不再改善时提前终止训练 |
|
early_stop=False, |
|
# 是否启用VisualDL日志功能 |
|
use_vdl=True, |
|
# 指定从某个检查点继续训练 |
|
resume_checkpoint=None) |
|
|
|
# 加载验证集上效果最好的模型 |
|
model = pdrs.tasks.load_model(osp.join(EXP_DIR, 'best_model')) |
|
# 在测试集上计算精度指标 |
|
model.evaluate(test_dataset)
|
|
|