You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

106 lines
4.8 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path as osp
import copy
from .base import BaseDataset
from paddlers.utils import logging, get_encoding, norm_path, is_pic
from paddlers.transforms import decode_seg_mask
class SegDataset(BaseDataset):
"""读取语义分割任务数据集,并对样本进行相应的处理。
Args:
data_dir (str): 数据集所在的目录路径。
file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路)。
label_list (str): 描述数据集包含的类别信息文件路径。默认值为None。
transforms (paddlers.transforms.Compose): 数据集中每个样本的预处理/增强算子。
num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据
系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的
一半。
shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。
apply_im_only (bool, optional): 是否绕过对标签的数据增强和预处理。在模型验证和推理阶段一般指定此选项为True。默认为False。
"""
def __init__(self,
data_dir,
file_list,
label_list=None,
transforms=None,
num_workers='auto',
shuffle=False,
apply_im_only=False):
super(SegDataset, self).__init__(data_dir, label_list, transforms,
num_workers, shuffle)
# TODO batch padding
self.batch_transforms = None
self.file_list = list()
self.labels = list()
self.apply_im_only = apply_im_only
# TODO:非None时,让用户跳转数据集分析生成label_list
# 不要在此处分析label file
if label_list is not None:
with open(label_list, encoding=get_encoding(label_list)) as f:
for line in f:
item = line.strip()
self.labels.append(item)
with open(file_list, encoding=get_encoding(file_list)) as f:
for line in f:
items = line.strip().split()
if len(items) > 2:
raise Exception(
"A space is defined as the delimiter to separate the image and label path, " \
"so the space cannot be in the image or label path, but the line[{}] of " \
" file_list[{}] has a space in the image or label path.".format(line, file_list))
items[0] = norm_path(items[0])
items[1] = norm_path(items[1])
full_path_im = osp.join(data_dir, items[0])
full_path_label = osp.join(data_dir, items[1])
if not is_pic(full_path_im) or not is_pic(full_path_label):
continue
if not osp.exists(full_path_im):
raise IOError('Image file {} does not exist!'.format(
full_path_im))
if not osp.exists(full_path_label):
raise IOError('Label file {} does not exist!'.format(
full_path_label))
self.file_list.append({
'image': full_path_im,
'mask': full_path_label
})
self.num_samples = len(self.file_list)
logging.info("{} samples in file {}".format(
len(self.file_list), file_list))
def __getitem__(self, idx):
sample = copy.deepcopy(self.file_list[idx])
if self.apply_im_only:
has_mask = False
if 'mask' in sample:
has_mask = True
mask = decode_seg_mask(sample['mask'])
del sample['mask']
sample = self.transforms.apply_transforms(sample)
if has_mask:
sample['mask'] = mask
outputs = self.transforms.arrange_outputs(sample)
else:
outputs = super().__getitem__(idx)
return outputs
def __len__(self):
return len(self.file_list)