You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
106 lines
4.8 KiB
106 lines
4.8 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os.path as osp |
|
import copy |
|
|
|
from .base import BaseDataset |
|
from paddlers.utils import logging, get_encoding, norm_path, is_pic |
|
from paddlers.transforms import decode_seg_mask |
|
|
|
|
|
class SegDataset(BaseDataset): |
|
"""读取语义分割任务数据集,并对样本进行相应的处理。 |
|
|
|
Args: |
|
data_dir (str): 数据集所在的目录路径。 |
|
file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路)。 |
|
label_list (str): 描述数据集包含的类别信息文件路径。默认值为None。 |
|
transforms (paddlers.transforms.Compose): 数据集中每个样本的预处理/增强算子。 |
|
num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据 |
|
系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的 |
|
一半。 |
|
shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。 |
|
apply_im_only (bool, optional): 是否绕过对标签的数据增强和预处理。在模型验证和推理阶段一般指定此选项为True。默认为False。 |
|
""" |
|
|
|
def __init__(self, |
|
data_dir, |
|
file_list, |
|
label_list=None, |
|
transforms=None, |
|
num_workers='auto', |
|
shuffle=False, |
|
apply_im_only=False): |
|
super(SegDataset, self).__init__(data_dir, label_list, transforms, |
|
num_workers, shuffle) |
|
# TODO batch padding |
|
self.batch_transforms = None |
|
self.file_list = list() |
|
self.labels = list() |
|
self.apply_im_only = apply_im_only |
|
|
|
# TODO:非None时,让用户跳转数据集分析生成label_list |
|
# 不要在此处分析label file |
|
if label_list is not None: |
|
with open(label_list, encoding=get_encoding(label_list)) as f: |
|
for line in f: |
|
item = line.strip() |
|
self.labels.append(item) |
|
with open(file_list, encoding=get_encoding(file_list)) as f: |
|
for line in f: |
|
items = line.strip().split() |
|
if len(items) > 2: |
|
raise Exception( |
|
"A space is defined as the delimiter to separate the image and label path, " \ |
|
"so the space cannot be in the image or label path, but the line[{}] of " \ |
|
" file_list[{}] has a space in the image or label path.".format(line, file_list)) |
|
items[0] = norm_path(items[0]) |
|
items[1] = norm_path(items[1]) |
|
full_path_im = osp.join(data_dir, items[0]) |
|
full_path_label = osp.join(data_dir, items[1]) |
|
if not is_pic(full_path_im) or not is_pic(full_path_label): |
|
continue |
|
if not osp.exists(full_path_im): |
|
raise IOError('Image file {} does not exist!'.format( |
|
full_path_im)) |
|
if not osp.exists(full_path_label): |
|
raise IOError('Label file {} does not exist!'.format( |
|
full_path_label)) |
|
self.file_list.append({ |
|
'image': full_path_im, |
|
'mask': full_path_label |
|
}) |
|
self.num_samples = len(self.file_list) |
|
logging.info("{} samples in file {}".format( |
|
len(self.file_list), file_list)) |
|
|
|
def __getitem__(self, idx): |
|
sample = copy.deepcopy(self.file_list[idx]) |
|
if self.apply_im_only: |
|
has_mask = False |
|
if 'mask' in sample: |
|
has_mask = True |
|
mask = decode_seg_mask(sample['mask']) |
|
del sample['mask'] |
|
sample = self.transforms.apply_transforms(sample) |
|
if has_mask: |
|
sample['mask'] = mask |
|
outputs = self.transforms.arrange_outputs(sample) |
|
else: |
|
outputs = super().__getitem__(idx) |
|
return outputs |
|
|
|
def __len__(self): |
|
return len(self.file_list)
|
|
|