You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

193 lines
5.0 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.nn as nn
__all__ = [
'BasicConv', 'Conv1x1', 'Conv3x3', 'Conv7x7', 'MaxPool2x2', 'MaxUnPool2x2',
'ConvTransposed3x3', 'Identity', 'get_norm_layer', 'get_act_layer',
'make_norm', 'make_act'
]
def get_norm_layer():
# TODO: select appropriate norm layer.
return nn.BatchNorm2D
def get_act_layer():
# TODO: select appropriate activation layer.
return nn.ReLU
def make_norm(*args, **kwargs):
norm_layer = get_norm_layer()
return norm_layer(*args, **kwargs)
def make_act(*args, **kwargs):
act_layer = get_act_layer()
return act_layer(*args, **kwargs)
class BasicConv(nn.Layer):
def __init__(self,
in_ch,
out_ch,
kernel_size,
pad_mode='constant',
bias='auto',
norm=False,
act=False,
**kwargs):
super(BasicConv, self).__init__()
seq = []
if kernel_size >= 2:
seq.append(nn.Pad2D(kernel_size // 2, mode=pad_mode))
seq.append(
nn.Conv2D(
in_ch,
out_ch,
kernel_size,
stride=1,
padding=0,
bias_attr=(False if norm else None) if bias == 'auto' else bias,
**kwargs))
if norm:
if norm is True:
norm = make_norm(out_ch)
seq.append(norm)
if act:
if act is True:
act = make_act()
seq.append(act)
self.seq = nn.Sequential(*seq)
def forward(self, x):
return self.seq(x)
class Conv1x1(BasicConv):
def __init__(self,
in_ch,
out_ch,
pad_mode='constant',
bias='auto',
norm=False,
act=False,
**kwargs):
super(Conv1x1, self).__init__(
in_ch,
out_ch,
1,
pad_mode=pad_mode,
bias=bias,
norm=norm,
act=act,
**kwargs)
class Conv3x3(BasicConv):
def __init__(self,
in_ch,
out_ch,
pad_mode='constant',
bias='auto',
norm=False,
act=False,
**kwargs):
super(Conv3x3, self).__init__(
in_ch,
out_ch,
3,
pad_mode=pad_mode,
bias=bias,
norm=norm,
act=act,
**kwargs)
class Conv7x7(BasicConv):
def __init__(self,
in_ch,
out_ch,
pad_mode='constant',
bias='auto',
norm=False,
act=False,
**kwargs):
super(Conv7x7, self).__init__(
in_ch,
out_ch,
7,
pad_mode=pad_mode,
bias=bias,
norm=norm,
act=act,
**kwargs)
class MaxPool2x2(nn.MaxPool2D):
def __init__(self, **kwargs):
super(MaxPool2x2, self).__init__(
kernel_size=2, stride=(2, 2), padding=(0, 0), **kwargs)
class MaxUnPool2x2(nn.MaxUnPool2D):
def __init__(self, **kwargs):
super(MaxUnPool2x2, self).__init__(
kernel_size=2, stride=(2, 2), padding=(0, 0), **kwargs)
class ConvTransposed3x3(nn.Layer):
def __init__(self,
in_ch,
out_ch,
bias='auto',
norm=False,
act=False,
**kwargs):
super(ConvTransposed3x3, self).__init__()
seq = []
seq.append(
nn.Conv2DTranspose(
in_ch,
out_ch,
3,
stride=2,
padding=1,
bias_attr=(False if norm else None) if bias == 'auto' else bias,
**kwargs))
if norm:
if norm is True:
norm = make_norm(out_ch)
seq.append(norm)
if act:
if act is True:
act = make_act()
seq.append(act)
self.seq = nn.Sequential(*seq)
def forward(self, x):
return self.seq(x)
class Identity(nn.Layer):
"""A placeholder identity operator that accepts exactly one argument."""
def __init__(self, *args, **kwargs):
super(Identity, self).__init__()
def forward(self, x):
return x