You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
181 lines
6.7 KiB
181 lines
6.7 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import copy |
|
import os |
|
|
|
import numpy as np |
|
from tqdm import tqdm |
|
from scipy.cluster.vq import kmeans |
|
|
|
from paddlers.utils import logging |
|
|
|
__all__ = ['YOLOAnchorCluster'] |
|
|
|
|
|
class BaseAnchorCluster(object): |
|
def __init__(self, num_anchors, cache, cache_path): |
|
""" |
|
Base Anchor Cluster |
|
|
|
Args: |
|
num_anchors (int): number of clusters |
|
cache (bool): whether using cache |
|
cache_path (str): cache directory path |
|
""" |
|
super(BaseAnchorCluster, self).__init__() |
|
self.num_anchors = num_anchors |
|
self.cache_path = cache_path |
|
self.cache = cache |
|
|
|
def print_result(self, centers): |
|
raise NotImplementedError('%s.print_result is not available' % |
|
self.__class__.__name__) |
|
|
|
def get_whs(self): |
|
whs_cache_path = os.path.join(self.cache_path, 'whs.npy') |
|
shapes_cache_path = os.path.join(self.cache_path, 'shapes.npy') |
|
if self.cache and os.path.exists(whs_cache_path) and os.path.exists( |
|
shapes_cache_path): |
|
self.whs = np.load(whs_cache_path) |
|
self.shapes = np.load(shapes_cache_path) |
|
return self.whs, self.shapes |
|
whs = np.zeros((0, 2)) |
|
shapes = np.zeros((0, 2)) |
|
samples = copy.deepcopy(self.dataset.file_list) |
|
for sample in tqdm(samples): |
|
im_h, im_w = sample['image_shape'] |
|
bbox = sample['gt_bbox'] |
|
wh = bbox[:, 2:4] - bbox[:, 0:2] |
|
wh = wh / np.array([[im_w, im_h]]) |
|
shape = np.ones_like(wh) * np.array([[im_w, im_h]]) |
|
whs = np.vstack((whs, wh)) |
|
shapes = np.vstack((shapes, shape)) |
|
|
|
if self.cache: |
|
os.makedirs(self.cache_path, exist_ok=True) |
|
np.save(whs_cache_path, whs) |
|
np.save(shapes_cache_path, shapes) |
|
|
|
self.whs = whs |
|
self.shapes = shapes |
|
return self.whs, self.shapes |
|
|
|
def calc_anchors(self): |
|
raise NotImplementedError('%s.calc_anchors is not available' % |
|
self.__class__.__name__) |
|
|
|
def __call__(self): |
|
self.get_whs() |
|
centers = self.calc_anchors() |
|
return centers |
|
|
|
|
|
class YOLOAnchorCluster(BaseAnchorCluster): |
|
def __init__(self, |
|
num_anchors, |
|
dataset, |
|
image_size, |
|
cache=True, |
|
cache_path=None, |
|
iters=300, |
|
gen_iters=1000, |
|
thresh=0.25): |
|
""" |
|
YOLOv5 Anchor Cluster |
|
|
|
Reference: |
|
https://github.com/ultralytics/yolov5/blob/master/utils/autoanchor.py |
|
|
|
Args: |
|
num_anchors (int): number of clusters |
|
dataset (DataSet): DataSet instance, VOC or COCO |
|
image_size (list or int): [h, w], being an int means image height and image width are the same. |
|
cache (bool): whether using cache. Defaults to True. |
|
cache_path (str or None, optional): cache directory path. If None, use `data_dir` of dataset. Defaults to None. |
|
iters (int, optional): iters of kmeans algorithm. Defaults to 300. |
|
gen_iters (int, optional): iters of genetic algorithm. Defaults to 1000. |
|
thresh (float, optional): anchor scale threshold. Defaults to 0.25. |
|
""" |
|
self.dataset = dataset |
|
if cache_path is None: |
|
cache_path = self.dataset.data_dir |
|
if isinstance(image_size, int): |
|
image_size = [image_size] * 2 |
|
self.image_size = image_size |
|
self.iters = iters |
|
self.gen_iters = gen_iters |
|
self.thresh = thresh |
|
super(YOLOAnchorCluster, self).__init__(num_anchors, cache, cache_path) |
|
|
|
def print_result(self, centers): |
|
whs = self.whs |
|
x, best = self.metric(whs, centers) |
|
bpr, aat = (best > self.thresh).mean(), ( |
|
x > self.thresh).mean() * self.num_anchors |
|
logging.info( |
|
'thresh=%.2f: %.4f best possible recall, %.2f anchors past thr' % |
|
(self.thresh, bpr, aat)) |
|
logging.info( |
|
'n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thresh=%.3f-mean: ' |
|
% (self.num_anchors, self.image_size, x.mean(), best.mean(), |
|
x[x > self.thresh].mean())) |
|
logging.info('%d anchor cluster result: [w, h]' % self.num_anchors) |
|
for w, h in centers: |
|
logging.info('[%d, %d]' % (w, h)) |
|
|
|
def metric(self, whs, centers): |
|
r = whs[:, None] / centers[None] |
|
x = np.minimum(r, 1. / r).min(2) |
|
return x, x.max(1) |
|
|
|
def fitness(self, whs, centers): |
|
_, best = self.metric(whs, centers) |
|
return (best * (best > self.thresh)).mean() |
|
|
|
def calc_anchors(self): |
|
self.whs = self.whs * self.shapes / self.shapes.max( |
|
1, keepdims=True) * np.array([self.image_size[::-1]]) |
|
wh0 = self.whs |
|
i = (wh0 < 3.0).any(1).sum() |
|
if i: |
|
logging.warning('Extremely small objects found. %d of %d ' |
|
'labels are < 3 pixels in width or height' % |
|
(i, len(wh0))) |
|
|
|
wh = wh0[(wh0 >= 2.0).any(1)] |
|
logging.info('Running kmeans for %g anchors on %g points...' % |
|
(self.num_anchors, len(wh))) |
|
s = wh.std(0) |
|
centers, dist = kmeans(wh / s, self.num_anchors, iter=self.iters) |
|
centers *= s |
|
|
|
f, sh, mp, s = self.fitness(wh, centers), centers.shape, 0.9, 0.1 |
|
pbar = tqdm( |
|
range(self.gen_iters), |
|
desc='Evolving anchors with Genetic Algorithm') |
|
for _ in pbar: |
|
v = np.ones(sh) |
|
while (v == 1).all(): |
|
v = ((np.random.random(sh) < mp) * np.random.random() * |
|
np.random.randn(*sh) * s + 1).clip(0.3, 3.0) |
|
new_centers = (centers.copy() * v).clip(min=2.0) |
|
new_f = self.fitness(wh, new_centers) |
|
if new_f > f: |
|
f, centers = new_f, new_centers.copy() |
|
pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f |
|
|
|
centers = np.round(centers[np.argsort(centers.prod(1))]).astype( |
|
int).tolist() |
|
return centers
|
|
|