You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

76 lines
2.9 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import math
import cv2
import numpy as np
from ppgan.utils.download import get_path_from_url
from ppgan.models.generators import GPEN
from ppgan.faceutils.face_detection.detection.blazeface.utils import *
GPEN_weights = 'https://paddlegan.bj.bcebos.com/models/GPEN-512.pdparams'
class FaceEnhancement(object):
def __init__(self, path_to_enhance=None, size=512, batch_size=1):
super(FaceEnhancement, self).__init__()
# Initialise the face detector
if path_to_enhance is None:
model_weights_path = get_path_from_url(GPEN_weights)
model_weights = paddle.load(model_weights_path)
else:
model_weights = paddle.load(path_to_enhance)
self.face_enhance = GPEN(size=512, style_dim=512, n_mlp=8)
self.face_enhance.load_dict(model_weights)
self.face_enhance.eval()
self.size = size
self.mask = np.zeros((512, 512), np.float32)
cv2.rectangle(self.mask, (26, 26), (486, 486), (1, 1, 1), -1,
cv2.LINE_AA)
self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11)
self.mask = cv2.GaussianBlur(self.mask, (101, 101), 11)
self.mask = paddle.tile(
paddle.to_tensor(self.mask).unsqueeze(0).unsqueeze(-1),
repeat_times=[batch_size, 1, 1, 3]).numpy()
def enhance_from_image(self, img):
if isinstance(img, np.ndarray):
img, _ = resize_and_crop_image(img, 512)
img = paddle.to_tensor(img).transpose([2, 0, 1])
else:
assert img.shape == [3, 512, 512]
return self.enhance_from_batch(img.unsqueeze(0))[0]
def enhance_from_batch(self, img):
if isinstance(img, np.ndarray):
img_ori, _ = resize_and_crop_batch(img, 512)
img = paddle.to_tensor(img_ori).transpose([0, 3, 1, 2])
else:
assert img.shape[1:] == [3, 512, 512]
img_ori = img.transpose([0, 2, 3, 1]).numpy()
img_t = (img / 255. - 0.5) / 0.5
with paddle.no_grad():
out, __ = self.face_enhance(img_t)
image_tensor = out * 0.5 + 0.5
image_tensor = image_tensor.transpose([0, 2, 3, 1]) # RGB
image_numpy = paddle.clip(image_tensor, 0, 1) * 255.0
out = image_numpy.astype(np.uint8).cpu().numpy()
return out * self.mask + (1 - self.mask) * img_ori