You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

85 lines
2.9 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import os.path
from .base_dataset import BaseDataset
from .builder import DATASETS
@DATASETS.register()
class UnpairedDataset(BaseDataset):
"""
"""
def __init__(self, dataroot_a, dataroot_b, max_size, is_train, preprocess):
"""Initialize unpaired dataset class.
Args:
dataroot_a (str): Directory of dataset a.
dataroot_b (str): Directory of dataset b.
max_size (int): max size of dataset size.
is_train (int): whether in train mode.
preprocess (list[dict]): A sequence of data preprocess config.
"""
super(UnpairedDataset, self).__init__(preprocess)
self.dir_A = os.path.join(dataroot_a)
self.dir_B = os.path.join(dataroot_b)
self.is_train = is_train
self.data_infos_a = self.prepare_data_infos(self.dir_A)
self.data_infos_b = self.prepare_data_infos(self.dir_B)
self.size_a = len(self.data_infos_a)
self.size_b = len(self.data_infos_b)
def prepare_data_infos(self, dataroot):
"""Load unpaired image paths of one domain.
Args:
dataroot (str): Path to the folder root for unpaired images of
one domain.
Returns:
list[dict]: List that contains unpaired image paths of one domain.
"""
data_infos = []
paths = sorted(self.scan_folder(dataroot))
for path in paths:
data_infos.append(dict(path=path))
return data_infos
def __getitem__(self, idx):
if self.is_train:
img_a_path = self.data_infos_a[idx % self.size_a]['path']
idx_b = random.randint(0, self.size_b - 1)
img_b_path = self.data_infos_b[idx_b]['path']
datas = dict(A_path=img_a_path, B_path=img_b_path)
else:
img_a_path = self.data_infos_a[idx % self.size_a]['path']
img_b_path = self.data_infos_b[idx % self.size_b]['path']
datas = dict(A_path=img_a_path, B_path=img_b_path)
if self.preprocess:
datas = self.preprocess(datas)
return datas
def __len__(self):
"""Return the total number of images in the dataset.
As we have two datasets with potentially different number of images,
we take a maximum of
"""
return max(self.size_a, self.size_b)