You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

76 lines
2.6 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
from .builder import DATASETS
from .base_dataset import BaseDataset
from .preprocess.builder import build_transforms
@DATASETS.register()
class CommonVisionDataset(paddle.io.Dataset):
"""
Dataset for using paddle vision default datasets, such as mnist, flowers.
"""
def __init__(self,
dataset_name,
transforms=None,
return_label=True,
params=None):
"""Initialize this dataset class.
Args:
dataset_name (str): return a dataset from paddle.vision.datasets by this option.
transforms (list[dict]): A sequence of data transforms config.
return_label (bool): whether to retuan a label of a sample.
params (dict): paramters of paddle.vision.datasets.
"""
super(CommonVisionDataset, self).__init__()
dataset_cls = getattr(paddle.vision.datasets, dataset_name)
transform = build_transforms(transforms)
self.return_label = return_label
param_dict = {}
param_names = list(dataset_cls.__init__.__code__.co_varnames)
if 'transform' in param_names:
param_dict['transform'] = transform
if params is not None:
for name in param_names:
if name in params:
param_dict[name] = params[name]
self.dataset = dataset_cls(**param_dict)
def __getitem__(self, index):
return_dict = {}
return_list = self.dataset[index]
if isinstance(return_list, (tuple, list)):
if len(return_list) == 2:
return_dict['img'] = return_list[0]
if self.return_label:
return_dict['class_id'] = np.asarray(return_list[1])
else:
return_dict['img'] = return_list[0]
else:
return_dict['img'] = return_list
return return_dict
def __len__(self):
return len(self.dataset)