You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
430 lines
14 KiB
430 lines
14 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
from paddle.nn.initializer import Normal |
|
|
|
from .backbones import resnet |
|
from .layers import Conv3x3, Conv1x1, get_norm_layer, Identity |
|
from .param_init import KaimingInitMixin |
|
|
|
|
|
def calc_product(*args): |
|
if len(args) < 1: |
|
raise ValueError |
|
ret = args[0] |
|
for arg in args[1:]: |
|
ret *= arg |
|
return ret |
|
|
|
|
|
class BIT(nn.Layer): |
|
""" |
|
The BIT implementation based on PaddlePaddle. |
|
|
|
The original article refers to |
|
H. Chen, et al., "Remote Sensing Image Change Detection With Transformers" |
|
(https://arxiv.org/abs/2103.00208). |
|
|
|
This implementation adopts pretrained encoders, as opposed to the original work where weights are randomly initialized. |
|
|
|
Args: |
|
in_channels (int): The number of bands of the input images. |
|
num_classes (int): The number of target classes. |
|
backbone (str, optional): The ResNet architecture that is used as the backbone. Currently, only 'resnet18' and |
|
'resnet34' are supported. Default: 'resnet18'. |
|
n_stages (int, optional): The number of ResNet stages used in the backbone, which should be a value in {3,4,5}. |
|
Default: 4. |
|
use_tokenizer (bool, optional): Use a tokenizer or not. Default: True. |
|
token_len (int, optional): The length of input tokens. Default: 4. |
|
pool_mode (str, optional): The pooling strategy to obtain input tokens when `use_tokenizer` is set to False. 'max' |
|
for global max pooling and 'avg' for global average pooling. Default: 'max'. |
|
pool_size (int, optional): The height and width of the pooled feature maps when `use_tokenizer` is set to False. |
|
Default: 2. |
|
enc_with_pos (bool, optional): Whether to add leanred positional embedding to the input feature sequence of the |
|
encoder. Default: True. |
|
enc_depth (int, optional): The number of attention blocks used in the encoder. Default: 1 |
|
enc_head_dim (int, optional): The embedding dimension of each encoder head. Default: 64. |
|
dec_depth (int, optional): The number of attention blocks used in the decoder. Default: 8. |
|
dec_head_dim (int, optional): The embedding dimension of each decoder head. Default: 8. |
|
|
|
Raises: |
|
ValueError: When an unsupported backbone type is specified, or the number of backbone stages is not 3, 4, or 5. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
num_classes, |
|
backbone='resnet18', |
|
n_stages=4, |
|
use_tokenizer=True, |
|
token_len=4, |
|
pool_mode='max', |
|
pool_size=2, |
|
enc_with_pos=True, |
|
enc_depth=1, |
|
enc_head_dim=64, |
|
dec_depth=8, |
|
dec_head_dim=8, |
|
**backbone_kwargs): |
|
super(BIT, self).__init__() |
|
|
|
# TODO: reduce hard-coded parameters |
|
DIM = 32 |
|
MLP_DIM = 2 * DIM |
|
EBD_DIM = DIM |
|
|
|
self.backbone = Backbone( |
|
in_channels, |
|
EBD_DIM, |
|
arch=backbone, |
|
n_stages=n_stages, |
|
**backbone_kwargs) |
|
|
|
self.use_tokenizer = use_tokenizer |
|
if not use_tokenizer: |
|
# If a tokenzier is not to be used,then downsample the feature maps. |
|
self.pool_size = pool_size |
|
self.pool_mode = pool_mode |
|
self.token_len = pool_size * pool_size |
|
else: |
|
self.conv_att = Conv1x1(32, token_len, bias=False) |
|
self.token_len = token_len |
|
|
|
self.enc_with_pos = enc_with_pos |
|
if enc_with_pos: |
|
self.enc_pos_embedding = self.create_parameter( |
|
shape=(1, self.token_len * 2, EBD_DIM), |
|
default_initializer=Normal()) |
|
|
|
self.enc_depth = enc_depth |
|
self.dec_depth = dec_depth |
|
self.enc_head_dim = enc_head_dim |
|
self.dec_head_dim = dec_head_dim |
|
|
|
self.encoder = TransformerEncoder( |
|
dim=DIM, |
|
depth=enc_depth, |
|
n_heads=8, |
|
head_dim=enc_head_dim, |
|
mlp_dim=MLP_DIM, |
|
dropout_rate=0.) |
|
self.decoder = TransformerDecoder( |
|
dim=DIM, |
|
depth=dec_depth, |
|
n_heads=8, |
|
head_dim=dec_head_dim, |
|
mlp_dim=MLP_DIM, |
|
dropout_rate=0., |
|
apply_softmax=True) |
|
|
|
self.upsample = nn.Upsample(scale_factor=4, mode='bilinear') |
|
self.conv_out = nn.Sequential( |
|
Conv3x3( |
|
EBD_DIM, EBD_DIM, norm=True, act=True), |
|
Conv3x3(EBD_DIM, num_classes)) |
|
|
|
def _get_semantic_tokens(self, x): |
|
b, c = x.shape[:2] |
|
att_map = self.conv_att(x) |
|
att_map = att_map.reshape( |
|
(b, self.token_len, 1, calc_product(*att_map.shape[2:]))) |
|
att_map = F.softmax(att_map, axis=-1) |
|
x = x.reshape((b, 1, c, att_map.shape[-1])) |
|
tokens = (x * att_map).sum(-1) |
|
return tokens |
|
|
|
def _get_reshaped_tokens(self, x): |
|
if self.pool_mode == 'max': |
|
x = F.adaptive_max_pool2d(x, (self.pool_size, self.pool_size)) |
|
elif self.pool_mode == 'avg': |
|
x = F.adaptive_avg_pool2d(x, (self.pool_size, self.pool_size)) |
|
else: |
|
x = x |
|
tokens = x.transpose((0, 2, 3, 1)).flatten(1, 2) |
|
return tokens |
|
|
|
def encode(self, x): |
|
if self.enc_with_pos: |
|
x += self.enc_pos_embedding |
|
x = self.encoder(x) |
|
return x |
|
|
|
def decode(self, x, m): |
|
b, c, h, w = x.shape |
|
x = x.transpose((0, 2, 3, 1)).flatten(1, 2) |
|
x = self.decoder(x, m) |
|
x = x.transpose((0, 2, 1)).reshape((b, c, h, w)) |
|
return x |
|
|
|
def forward(self, t1, t2): |
|
# Extract features via shared backbone. |
|
x1 = self.backbone(t1) |
|
x2 = self.backbone(t2) |
|
|
|
# Tokenization |
|
if self.use_tokenizer: |
|
token1 = self._get_semantic_tokens(x1) |
|
token2 = self._get_semantic_tokens(x2) |
|
else: |
|
token1 = self._get_reshaped_tokens(x1) |
|
token2 = self._get_reshaped_tokens(x2) |
|
|
|
# Transformer encoder forward |
|
token = paddle.concat([token1, token2], axis=1) |
|
token = self.encode(token) |
|
token1, token2 = paddle.chunk(token, 2, axis=1) |
|
|
|
# Transformer decoder forward |
|
y1 = self.decode(x1, token1) |
|
y2 = self.decode(x2, token2) |
|
|
|
# Feature differencing |
|
y = paddle.abs(y1 - y2) |
|
y = self.upsample(y) |
|
|
|
# Classifier forward |
|
pred = self.conv_out(y) |
|
return [pred] |
|
|
|
def init_weight(self): |
|
# Use the default initialization method. |
|
pass |
|
|
|
|
|
class Residual(nn.Layer): |
|
def __init__(self, fn): |
|
super(Residual, self).__init__() |
|
self.fn = fn |
|
|
|
def forward(self, x, **kwargs): |
|
return self.fn(x, **kwargs) + x |
|
|
|
|
|
class Residual2(nn.Layer): |
|
def __init__(self, fn): |
|
super(Residual2, self).__init__() |
|
self.fn = fn |
|
|
|
def forward(self, x1, x2, **kwargs): |
|
return self.fn(x1, x2, **kwargs) + x1 |
|
|
|
|
|
class PreNorm(nn.Layer): |
|
def __init__(self, dim, fn): |
|
super(PreNorm, self).__init__() |
|
self.norm = nn.LayerNorm(dim) |
|
self.fn = fn |
|
|
|
def forward(self, x, **kwargs): |
|
return self.fn(self.norm(x), **kwargs) |
|
|
|
|
|
class PreNorm2(nn.Layer): |
|
def __init__(self, dim, fn): |
|
super(PreNorm2, self).__init__() |
|
self.norm = nn.LayerNorm(dim) |
|
self.fn = fn |
|
|
|
def forward(self, x1, x2, **kwargs): |
|
return self.fn(self.norm(x1), self.norm(x2), **kwargs) |
|
|
|
|
|
class FeedForward(nn.Sequential): |
|
def __init__(self, dim, hidden_dim, dropout_rate=0.): |
|
super(FeedForward, self).__init__( |
|
nn.Linear(dim, hidden_dim), |
|
nn.GELU(), |
|
nn.Dropout(dropout_rate), |
|
nn.Linear(hidden_dim, dim), nn.Dropout(dropout_rate)) |
|
|
|
|
|
class CrossAttention(nn.Layer): |
|
def __init__(self, |
|
dim, |
|
n_heads=8, |
|
head_dim=64, |
|
dropout_rate=0., |
|
apply_softmax=True): |
|
super(CrossAttention, self).__init__() |
|
|
|
inner_dim = head_dim * n_heads |
|
self.n_heads = n_heads |
|
self.head_dim = head_dim |
|
self.scale = dim**-0.5 |
|
|
|
self.apply_softmax = apply_softmax |
|
|
|
self.fc_q = nn.Linear(dim, inner_dim, bias_attr=False) |
|
self.fc_k = nn.Linear(dim, inner_dim, bias_attr=False) |
|
self.fc_v = nn.Linear(dim, inner_dim, bias_attr=False) |
|
|
|
self.fc_out = nn.Sequential( |
|
nn.Linear(inner_dim, dim), nn.Dropout(dropout_rate)) |
|
|
|
def forward(self, x, ref): |
|
b, n = x.shape[:2] |
|
h = self.n_heads |
|
|
|
q = self.fc_q(x) |
|
k = self.fc_k(ref) |
|
v = self.fc_v(ref) |
|
|
|
q = q.reshape((b, n, h, self.head_dim)).transpose((0, 2, 1, 3)) |
|
rn = ref.shape[1] |
|
k = k.reshape((b, rn, h, self.head_dim)).transpose((0, 2, 1, 3)) |
|
v = v.reshape((b, rn, h, self.head_dim)).transpose((0, 2, 1, 3)) |
|
|
|
mult = paddle.matmul(q, k, transpose_y=True) * self.scale |
|
|
|
if self.apply_softmax: |
|
mult = F.softmax(mult, axis=-1) |
|
|
|
out = paddle.matmul(mult, v) |
|
out = out.transpose((0, 2, 1, 3)).flatten(2) |
|
return self.fc_out(out) |
|
|
|
|
|
class SelfAttention(CrossAttention): |
|
def forward(self, x): |
|
return super(SelfAttention, self).forward(x, x) |
|
|
|
|
|
class TransformerEncoder(nn.Layer): |
|
def __init__(self, dim, depth, n_heads, head_dim, mlp_dim, dropout_rate): |
|
super(TransformerEncoder, self).__init__() |
|
self.layers = nn.LayerList([]) |
|
for _ in range(depth): |
|
self.layers.append( |
|
nn.LayerList([ |
|
Residual( |
|
PreNorm(dim, |
|
SelfAttention(dim, n_heads, head_dim, |
|
dropout_rate))), |
|
Residual( |
|
PreNorm(dim, FeedForward(dim, mlp_dim, dropout_rate))) |
|
])) |
|
|
|
def forward(self, x): |
|
for att, ff in self.layers: |
|
x = att(x) |
|
x = ff(x) |
|
return x |
|
|
|
|
|
class TransformerDecoder(nn.Layer): |
|
def __init__(self, |
|
dim, |
|
depth, |
|
n_heads, |
|
head_dim, |
|
mlp_dim, |
|
dropout_rate, |
|
apply_softmax=True): |
|
super(TransformerDecoder, self).__init__() |
|
self.layers = nn.LayerList([]) |
|
for _ in range(depth): |
|
self.layers.append( |
|
nn.LayerList([ |
|
Residual2( |
|
PreNorm2(dim, |
|
CrossAttention(dim, n_heads, head_dim, |
|
dropout_rate, apply_softmax))), |
|
Residual( |
|
PreNorm(dim, FeedForward(dim, mlp_dim, dropout_rate))) |
|
])) |
|
|
|
def forward(self, x, m): |
|
for att, ff in self.layers: |
|
x = att(x, m) |
|
x = ff(x) |
|
return x |
|
|
|
|
|
class Backbone(nn.Layer, KaimingInitMixin): |
|
def __init__(self, |
|
in_ch, |
|
out_ch=32, |
|
arch='resnet18', |
|
pretrained=True, |
|
n_stages=5): |
|
super(Backbone, self).__init__() |
|
|
|
expand = 1 |
|
strides = (2, 1, 2, 1, 1) |
|
if arch == 'resnet18': |
|
self.resnet = resnet.resnet18( |
|
pretrained=pretrained, |
|
strides=strides, |
|
norm_layer=get_norm_layer()) |
|
elif arch == 'resnet34': |
|
self.resnet = resnet.resnet34( |
|
pretrained=pretrained, |
|
strides=strides, |
|
norm_layer=get_norm_layer()) |
|
else: |
|
raise ValueError |
|
|
|
self.n_stages = n_stages |
|
|
|
if self.n_stages == 5: |
|
itm_ch = 512 * expand |
|
elif self.n_stages == 4: |
|
itm_ch = 256 * expand |
|
elif self.n_stages == 3: |
|
itm_ch = 128 * expand |
|
else: |
|
raise ValueError |
|
|
|
self.upsample = nn.Upsample(scale_factor=2) |
|
self.conv_out = Conv3x3(itm_ch, out_ch) |
|
|
|
self._trim_resnet() |
|
|
|
if in_ch != 3: |
|
self.resnet.conv1 = nn.Conv2D( |
|
in_ch, 64, kernel_size=7, stride=2, padding=3, bias_attr=False) |
|
|
|
if not pretrained: |
|
self.init_weight() |
|
|
|
def forward(self, x): |
|
y = self.resnet.conv1(x) |
|
y = self.resnet.bn1(y) |
|
y = self.resnet.relu(y) |
|
y = self.resnet.maxpool(y) |
|
|
|
y = self.resnet.layer1(y) |
|
y = self.resnet.layer2(y) |
|
y = self.resnet.layer3(y) |
|
y = self.resnet.layer4(y) |
|
|
|
y = self.upsample(y) |
|
|
|
return self.conv_out(y) |
|
|
|
def _trim_resnet(self): |
|
if self.n_stages > 5: |
|
raise ValueError |
|
|
|
if self.n_stages < 5: |
|
self.resnet.layer4 = Identity() |
|
|
|
if self.n_stages <= 3: |
|
self.resnet.layer3 = Identity() |
|
|
|
self.resnet.avgpool = Identity() |
|
self.resnet.fc = Identity()
|
|
|