You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

430 lines
14 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal
from .backbones import resnet
from .layers import Conv3x3, Conv1x1, get_norm_layer, Identity
from .param_init import KaimingInitMixin
def calc_product(*args):
if len(args) < 1:
raise ValueError
ret = args[0]
for arg in args[1:]:
ret *= arg
return ret
class BIT(nn.Layer):
"""
The BIT implementation based on PaddlePaddle.
The original article refers to
H. Chen, et al., "Remote Sensing Image Change Detection With Transformers"
(https://arxiv.org/abs/2103.00208).
This implementation adopts pretrained encoders, as opposed to the original work where weights are randomly initialized.
Args:
in_channels (int): The number of bands of the input images.
num_classes (int): The number of target classes.
backbone (str, optional): The ResNet architecture that is used as the backbone. Currently, only 'resnet18' and
'resnet34' are supported. Default: 'resnet18'.
n_stages (int, optional): The number of ResNet stages used in the backbone, which should be a value in {3,4,5}.
Default: 4.
use_tokenizer (bool, optional): Use a tokenizer or not. Default: True.
token_len (int, optional): The length of input tokens. Default: 4.
pool_mode (str, optional): The pooling strategy to obtain input tokens when `use_tokenizer` is set to False. 'max'
for global max pooling and 'avg' for global average pooling. Default: 'max'.
pool_size (int, optional): The height and width of the pooled feature maps when `use_tokenizer` is set to False.
Default: 2.
enc_with_pos (bool, optional): Whether to add leanred positional embedding to the input feature sequence of the
encoder. Default: True.
enc_depth (int, optional): The number of attention blocks used in the encoder. Default: 1
enc_head_dim (int, optional): The embedding dimension of each encoder head. Default: 64.
dec_depth (int, optional): The number of attention blocks used in the decoder. Default: 8.
dec_head_dim (int, optional): The embedding dimension of each decoder head. Default: 8.
Raises:
ValueError: When an unsupported backbone type is specified, or the number of backbone stages is not 3, 4, or 5.
"""
def __init__(self,
in_channels,
num_classes,
backbone='resnet18',
n_stages=4,
use_tokenizer=True,
token_len=4,
pool_mode='max',
pool_size=2,
enc_with_pos=True,
enc_depth=1,
enc_head_dim=64,
dec_depth=8,
dec_head_dim=8,
**backbone_kwargs):
super(BIT, self).__init__()
# TODO: reduce hard-coded parameters
DIM = 32
MLP_DIM = 2 * DIM
EBD_DIM = DIM
self.backbone = Backbone(
in_channels,
EBD_DIM,
arch=backbone,
n_stages=n_stages,
**backbone_kwargs)
self.use_tokenizer = use_tokenizer
if not use_tokenizer:
# If a tokenzier is not to be used,then downsample the feature maps.
self.pool_size = pool_size
self.pool_mode = pool_mode
self.token_len = pool_size * pool_size
else:
self.conv_att = Conv1x1(32, token_len, bias=False)
self.token_len = token_len
self.enc_with_pos = enc_with_pos
if enc_with_pos:
self.enc_pos_embedding = self.create_parameter(
shape=(1, self.token_len * 2, EBD_DIM),
default_initializer=Normal())
self.enc_depth = enc_depth
self.dec_depth = dec_depth
self.enc_head_dim = enc_head_dim
self.dec_head_dim = dec_head_dim
self.encoder = TransformerEncoder(
dim=DIM,
depth=enc_depth,
n_heads=8,
head_dim=enc_head_dim,
mlp_dim=MLP_DIM,
dropout_rate=0.)
self.decoder = TransformerDecoder(
dim=DIM,
depth=dec_depth,
n_heads=8,
head_dim=dec_head_dim,
mlp_dim=MLP_DIM,
dropout_rate=0.,
apply_softmax=True)
self.upsample = nn.Upsample(scale_factor=4, mode='bilinear')
self.conv_out = nn.Sequential(
Conv3x3(
EBD_DIM, EBD_DIM, norm=True, act=True),
Conv3x3(EBD_DIM, num_classes))
def _get_semantic_tokens(self, x):
b, c = x.shape[:2]
att_map = self.conv_att(x)
att_map = att_map.reshape(
(b, self.token_len, 1, calc_product(*att_map.shape[2:])))
att_map = F.softmax(att_map, axis=-1)
x = x.reshape((b, 1, c, att_map.shape[-1]))
tokens = (x * att_map).sum(-1)
return tokens
def _get_reshaped_tokens(self, x):
if self.pool_mode == 'max':
x = F.adaptive_max_pool2d(x, (self.pool_size, self.pool_size))
elif self.pool_mode == 'avg':
x = F.adaptive_avg_pool2d(x, (self.pool_size, self.pool_size))
else:
x = x
tokens = x.transpose((0, 2, 3, 1)).flatten(1, 2)
return tokens
def encode(self, x):
if self.enc_with_pos:
x += self.enc_pos_embedding
x = self.encoder(x)
return x
def decode(self, x, m):
b, c, h, w = x.shape
x = x.transpose((0, 2, 3, 1)).flatten(1, 2)
x = self.decoder(x, m)
x = x.transpose((0, 2, 1)).reshape((b, c, h, w))
return x
def forward(self, t1, t2):
# Extract features via shared backbone.
x1 = self.backbone(t1)
x2 = self.backbone(t2)
# Tokenization
if self.use_tokenizer:
token1 = self._get_semantic_tokens(x1)
token2 = self._get_semantic_tokens(x2)
else:
token1 = self._get_reshaped_tokens(x1)
token2 = self._get_reshaped_tokens(x2)
# Transformer encoder forward
token = paddle.concat([token1, token2], axis=1)
token = self.encode(token)
token1, token2 = paddle.chunk(token, 2, axis=1)
# Transformer decoder forward
y1 = self.decode(x1, token1)
y2 = self.decode(x2, token2)
# Feature differencing
y = paddle.abs(y1 - y2)
y = self.upsample(y)
# Classifier forward
pred = self.conv_out(y)
return [pred]
def init_weight(self):
# Use the default initialization method.
pass
class Residual(nn.Layer):
def __init__(self, fn):
super(Residual, self).__init__()
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) + x
class Residual2(nn.Layer):
def __init__(self, fn):
super(Residual2, self).__init__()
self.fn = fn
def forward(self, x1, x2, **kwargs):
return self.fn(x1, x2, **kwargs) + x1
class PreNorm(nn.Layer):
def __init__(self, dim, fn):
super(PreNorm, self).__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class PreNorm2(nn.Layer):
def __init__(self, dim, fn):
super(PreNorm2, self).__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x1, x2, **kwargs):
return self.fn(self.norm(x1), self.norm(x2), **kwargs)
class FeedForward(nn.Sequential):
def __init__(self, dim, hidden_dim, dropout_rate=0.):
super(FeedForward, self).__init__(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout_rate),
nn.Linear(hidden_dim, dim), nn.Dropout(dropout_rate))
class CrossAttention(nn.Layer):
def __init__(self,
dim,
n_heads=8,
head_dim=64,
dropout_rate=0.,
apply_softmax=True):
super(CrossAttention, self).__init__()
inner_dim = head_dim * n_heads
self.n_heads = n_heads
self.head_dim = head_dim
self.scale = dim**-0.5
self.apply_softmax = apply_softmax
self.fc_q = nn.Linear(dim, inner_dim, bias_attr=False)
self.fc_k = nn.Linear(dim, inner_dim, bias_attr=False)
self.fc_v = nn.Linear(dim, inner_dim, bias_attr=False)
self.fc_out = nn.Sequential(
nn.Linear(inner_dim, dim), nn.Dropout(dropout_rate))
def forward(self, x, ref):
b, n = x.shape[:2]
h = self.n_heads
q = self.fc_q(x)
k = self.fc_k(ref)
v = self.fc_v(ref)
q = q.reshape((b, n, h, self.head_dim)).transpose((0, 2, 1, 3))
rn = ref.shape[1]
k = k.reshape((b, rn, h, self.head_dim)).transpose((0, 2, 1, 3))
v = v.reshape((b, rn, h, self.head_dim)).transpose((0, 2, 1, 3))
mult = paddle.matmul(q, k, transpose_y=True) * self.scale
if self.apply_softmax:
mult = F.softmax(mult, axis=-1)
out = paddle.matmul(mult, v)
out = out.transpose((0, 2, 1, 3)).flatten(2)
return self.fc_out(out)
class SelfAttention(CrossAttention):
def forward(self, x):
return super(SelfAttention, self).forward(x, x)
class TransformerEncoder(nn.Layer):
def __init__(self, dim, depth, n_heads, head_dim, mlp_dim, dropout_rate):
super(TransformerEncoder, self).__init__()
self.layers = nn.LayerList([])
for _ in range(depth):
self.layers.append(
nn.LayerList([
Residual(
PreNorm(dim,
SelfAttention(dim, n_heads, head_dim,
dropout_rate))),
Residual(
PreNorm(dim, FeedForward(dim, mlp_dim, dropout_rate)))
]))
def forward(self, x):
for att, ff in self.layers:
x = att(x)
x = ff(x)
return x
class TransformerDecoder(nn.Layer):
def __init__(self,
dim,
depth,
n_heads,
head_dim,
mlp_dim,
dropout_rate,
apply_softmax=True):
super(TransformerDecoder, self).__init__()
self.layers = nn.LayerList([])
for _ in range(depth):
self.layers.append(
nn.LayerList([
Residual2(
PreNorm2(dim,
CrossAttention(dim, n_heads, head_dim,
dropout_rate, apply_softmax))),
Residual(
PreNorm(dim, FeedForward(dim, mlp_dim, dropout_rate)))
]))
def forward(self, x, m):
for att, ff in self.layers:
x = att(x, m)
x = ff(x)
return x
class Backbone(nn.Layer, KaimingInitMixin):
def __init__(self,
in_ch,
out_ch=32,
arch='resnet18',
pretrained=True,
n_stages=5):
super(Backbone, self).__init__()
expand = 1
strides = (2, 1, 2, 1, 1)
if arch == 'resnet18':
self.resnet = resnet.resnet18(
pretrained=pretrained,
strides=strides,
norm_layer=get_norm_layer())
elif arch == 'resnet34':
self.resnet = resnet.resnet34(
pretrained=pretrained,
strides=strides,
norm_layer=get_norm_layer())
else:
raise ValueError
self.n_stages = n_stages
if self.n_stages == 5:
itm_ch = 512 * expand
elif self.n_stages == 4:
itm_ch = 256 * expand
elif self.n_stages == 3:
itm_ch = 128 * expand
else:
raise ValueError
self.upsample = nn.Upsample(scale_factor=2)
self.conv_out = Conv3x3(itm_ch, out_ch)
self._trim_resnet()
if in_ch != 3:
self.resnet.conv1 = nn.Conv2D(
in_ch, 64, kernel_size=7, stride=2, padding=3, bias_attr=False)
if not pretrained:
self.init_weight()
def forward(self, x):
y = self.resnet.conv1(x)
y = self.resnet.bn1(y)
y = self.resnet.relu(y)
y = self.resnet.maxpool(y)
y = self.resnet.layer1(y)
y = self.resnet.layer2(y)
y = self.resnet.layer3(y)
y = self.resnet.layer4(y)
y = self.upsample(y)
return self.conv_out(y)
def _trim_resnet(self):
if self.n_stages > 5:
raise ValueError
if self.n_stages < 5:
self.resnet.layer4 = Identity()
if self.n_stages <= 3:
self.resnet.layer3 = Identity()
self.resnet.avgpool = Identity()
self.resnet.fc = Identity()