You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

86 lines
3.2 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
from .builder import MODELS
from .sr_model import BaseSRModel
from .generators.edvr import ResidualBlockNoBN, DCNPack
from ..modules.init import reset_parameters
@MODELS.register()
class EDVRModel(BaseSRModel):
"""EDVR Model.
Paper: EDVR: Video Restoration with Enhanced Deformable Convolutional Networks.
"""
def __init__(self, generator, tsa_iter, pixel_criterion=None):
"""Initialize the EDVR class.
Args:
generator (dict): config of generator.
tsa_iter (dict): config of tsa_iter.
pixel_criterion (dict): config of pixel criterion.
"""
super(EDVRModel, self).__init__(generator, pixel_criterion)
self.tsa_iter = tsa_iter
self.current_iter = 1
init_edvr_weight(self.nets['generator'])
def setup_input(self, input):
self.lq = input['lq']
self.visual_items['lq'] = self.lq[:, 2, :, :, :]
self.visual_items['lq-2'] = self.lq[:, 0, :, :, :]
self.visual_items['lq-1'] = self.lq[:, 1, :, :, :]
self.visual_items['lq+1'] = self.lq[:, 3, :, :, :]
self.visual_items['lq+2'] = self.lq[:, 4, :, :, :]
if 'gt' in input:
self.gt = input['gt']
self.visual_items['gt'] = self.gt
self.image_paths = input['lq_path']
def train_iter(self, optims=None):
optims['optim'].clear_grad()
if self.tsa_iter:
if self.current_iter == 1:
print('Only train TSA module for', self.tsa_iter, 'iters.')
for name, param in self.nets['generator'].named_parameters():
if 'TSAModule' not in name:
param.trainable = False
elif self.current_iter == self.tsa_iter + 1:
print('Train all the parameters.')
for param in self.nets['generator'].parameters():
param.trainable = True
self.output = self.nets['generator'](self.lq)
self.visual_items['output'] = self.output
# pixel loss
loss_pixel = self.pixel_criterion(self.output, self.gt)
self.losses['loss_pixel'] = loss_pixel
loss_pixel.backward()
optims['optim'].step()
self.current_iter += 1
def init_edvr_weight(net):
def reset_func(m):
if hasattr(m, 'weight') and (not isinstance(
m, (nn.BatchNorm, nn.BatchNorm2D))) and (
not isinstance(m, ResidualBlockNoBN) and
(not isinstance(m, DCNPack))):
reset_parameters(m)
net.apply(reset_func)