You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

423 lines
11 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Refer to https://github.com/awesome-spectral-indices/awesome-spectral-indices .
# See LICENSE (https://github.com/awesome-spectral-indices/awesome-spectral-indices/blob/main/LICENSE).
import abc
__all__ = [
'ARI', 'ARI2', 'ARVI', 'AWEInsh', 'AWEIsh', 'BAI', 'BI', 'BLFEI', 'BNDVI',
'BWDRVI', 'BaI', 'CIG', 'CSI', 'CSIT', 'DBI', 'DBSI', 'DVI', 'EBBI', 'EMBI',
'EVI', 'EVI2', 'FCVI', 'GARI', 'GBNDVI', 'GLI', 'GNDVI', 'GRVI', 'IPVI',
'LSWI', 'MBI', 'MGRVI', 'MNDVI', 'MNDWI', 'MNLI', 'MSI', 'NBLI', 'NDSI',
'NDVI', 'NDWI', 'NDYI', 'NIRv', 'PSRI', 'RI', 'SAVI', 'SWI', 'TDVI', 'UI',
'VIG', 'WI1', 'WI2', 'WRI'
]
EPS = 1e-32
BAND_NAMES = ["b", "g", "r", "re1", "re2", "re3", "n", "s1", "s2", "t1", "t2"]
# | Band name | Description | Wavelength (μm) | Satellite |
# |-----------|-------------|-----------------|-----------|
# | b | Blue | 0.450-0.515 | Landsat8 |
# | g | Green | 0.525-0.600 | Landsat8 |
# | r | Red | 0.630-0.680 | Landsat8 |
# | re1 | Red Edge 1 | 0.698-0.713 | Sentinel2 |
# | re2 | Red Edge 2 | 0.733-0.748 | Sentinel2 |
# | re3 | Red Edge 3 | 0.773-0.793 | Sentinel2 |
# | n | NIR | 0.845-0.885 | Landsat8 |
# | s1 | SWIR 1 | 1.560-1.660 | Landsat8 |
# | s2 | SWIR 2 | 2.100-2.300 | Landsat8 |
# | t1 | Thermal 1 | 10.60-11.19 | Landsat8 |
# | t2 | Thermal 2 | 11.50-12.51 | Landsat8 |
class RSIndex(metaclass=abc.ABCMeta):
def __init__(self, band_indices):
super(RSIndex, self).__init__()
self.band_indices = band_indices
self.required_band_names = iintersection(
self._compute.__code__.co_varnames[1:], # strip self
BAND_NAMES # only save band names
)
@abc.abstractmethod
def _compute(self, *args, **kwargs):
pass
def __call__(self, image):
bands = self.select_bands(image)
now_band_names = tuple(bands.keys())
if not iequal(now_band_names, self.required_band_names):
raise LackBandError("Lack of bands: {}.".format(
isubtraction(self.required_band_names, now_band_names)))
return self._compute(**bands)
def select_bands(self, image, to_float32=True):
bands = {}
for name, idx in self.band_indices.items():
if name in self.required_band_names:
if idx == 0:
raise ValueError("Band index starts from 1.")
bands[name] = image[..., idx - 1]
if to_float32:
bands[name] = bands[name].astype('float32')
return bands
class LackBandError(Exception):
pass
def iintersection(iter1, iter2):
return tuple(set(iter1) & set(iter2))
def isubtraction(iter1, iter2):
return tuple(set(iter1) - set(iter2))
def iequal(iter1, iter2):
return set(iter1) == set(iter2)
def compute_normalized_difference_index(band1, band2):
return (band1 - band2) / (band1 + band2 + EPS)
class ARI(RSIndex):
def _compute(self, g, re1):
index = 1 / (g + EPS)
index -= 1 / (re1 + EPS)
return index
class ARI2(RSIndex):
def _compute(self, g, re1, n):
index = 1 / (g + EPS)
index -= 1 / (re1 + EPS)
index = index * n
return index
class ARVI(RSIndex):
def __init__(self, band_indices, c0):
super(ARVI, self).__init__(band_indices)
self.c0 = c0
def _compute(self, b, r, n):
return compute_normalized_difference_index(n, r - self.c0 * (r - b))
class AWEInsh(RSIndex):
def _compute(self, g, n, s1, s2):
index = 4.0 * (g - s1)
index -= 0.25 * n
index += 2.75 * s2
return index
class AWEIsh(RSIndex):
def _compute(self, b, g, n, s1, s2):
index = 2.5 * g
index += b
index -= 1.5 * (n + s1)
index -= 0.25 * s2
return index
class BAI(RSIndex):
def _compute(self, r, n):
index = (0.1 - r)**2.0
index += (0.06 - n)**2.0
return 1.0 / (index + EPS)
class BI(RSIndex):
def _compute(self, b, r, n, s1):
return compute_normalized_difference_index(s1 + r, n + b)
class BLFEI(RSIndex):
def _compute(self, g, r, s1, s2):
return compute_normalized_difference_index((g + r + s2) / 3.0, s1)
class BNDVI(RSIndex):
def _compute(self, b, n):
return compute_normalized_difference_index(n, b)
class BWDRVI(RSIndex):
def __init__(self, band_indices, c0):
super(BWDRVI, self).__init__(band_indices)
self.c0 = c0
def _compute(self, b, n):
return compute_normalized_difference_index(self.c0 * n, b)
class BaI(RSIndex):
def _compute(self, r, n, s1):
index = r + s1
index -= n
return index
class CIG(RSIndex):
def _compute(self, g, n):
index = n / (g + EPS)
index -= 1.0
return index
class CSI(RSIndex):
def _compute(self, n, s2):
return n / (s2 + EPS)
class CSIT(RSIndex):
def _compute(self, n, s2, t1):
return n / ((s2 * t1) / 10000.0 + EPS)
class DBI(RSIndex):
def _compute(self, b, r, n, t1):
index = (b - t1) / (b + t1 + EPS)
index -= (n - r) / (n + r + EPS)
return index
class DBSI(RSIndex):
def _compute(self, g, r, n, s1):
index = (s1 - g) / (s1 + g + EPS)
index -= (n - r) / (n + r + EPS)
return index
class DVI(RSIndex):
def _compute(self, r, n):
return n - r
class EBBI(RSIndex):
def _compute(self, n, s1, t1):
num = s1 - n
denom = (10.0 * ((s1 + t1)**0.5))
return num / (denom + EPS)
class EMBI(RSIndex):
def _compute(self, g, n, s1, s2):
item1 = compute_normalized_difference_index(s1, s2 + n)
item1 += 0.5
item2 = compute_normalized_difference_index(g, s1)
return (item1 - item2 - 0.5) / (item1 + item2 + 1.5 + EPS)
class EVI(RSIndex):
def __init__(self, band_indices, c0=2.5, c1=6, c2=7.5, c3=1):
super(EVI, self).__init__(band_indices)
self.c0 = c0
self.c1 = c1
self.c2 = c2
self.c3 = c3
def _compute(self, b, r, n):
num = self.c0 * (n - r)
denom = n + self.c1 * r - self.c2 * b + self.c3
return num / (denom + EPS)
class EVI2(RSIndex):
def __init__(self, band_indices, c0, c1):
super(EVI2, self).__init__(band_indices)
self.c0 = c0
self.c1 = c1
def _compute(self, n, r):
num = self.c0 * (n - r)
denom = n + 2.4 * r + self.c1
return num / (denom + EPS)
class FCVI(RSIndex):
def _compute(self, b, g, r, n):
return n - ((r + g + b) / 3.0)
class GARI(RSIndex):
def _compute(self, b, g, r, n):
num = n - (g - (b - r))
denom = n - (g + (b - r))
return num / (denom + EPS)
class GBNDVI(RSIndex):
def _compute(self, b, g, n):
return compute_normalized_difference_index(n, g + b)
class GLI(RSIndex):
def _compute(self, b, g, r):
return compute_normalized_difference_index(2.0 * g, r + b)
class GNDVI(RSIndex):
def _compute(self, g, n):
return compute_normalized_difference_index(n, g)
class GRVI(RSIndex):
def _compute(self, g, n):
return n / (g + EPS)
class IPVI(RSIndex):
def _compute(self, r, n):
return n / (n + r + EPS)
class LSWI(RSIndex):
def _compute(self, n, s1):
return compute_normalized_difference_index(n, s1)
class MBI(RSIndex):
def _compute(self, n, s1, s2):
index = compute_normalized_difference_index(s1, s2 + n)
index += 0.5
return index
class MGRVI(RSIndex):
def _compute(self, g, r):
return compute_normalized_difference_index(g**2.0, r**2.0)
class MNDVI(RSIndex):
def _compute(self, n, s2):
return compute_normalized_difference_index(n, s2)
class MNDWI(RSIndex):
def _compute(self, g, s1):
return compute_normalized_difference_index(g, s1)
class MNLI(RSIndex):
def __init__(self, band_indices, c0):
super(MNLI, self).__init__(band_indices)
self.c0 = c0
def _compute(self, r, n):
num = (1 + self.c0) * ((n**2) - r)
denom = ((n**2) + r + self.c0)
return num / (denom + EPS)
class MSI(RSIndex):
def _compute(self, n, s1):
return s1 / (n + EPS)
class NBLI(RSIndex):
def _compute(self, r, t1):
return compute_normalized_difference_index(r, t1)
class NDSI(RSIndex):
def _compute(self, g, s1):
return compute_normalized_difference_index(g, s1)
class NDVI(RSIndex):
def _compute(self, r, n):
return compute_normalized_difference_index(n, r)
class NDWI(RSIndex):
def _compute(self, g, n):
return compute_normalized_difference_index(g, n)
class NDYI(RSIndex):
def _compute(self, b, g):
return compute_normalized_difference_index(g, b)
class NIRv(RSIndex):
def _compute(self, r, n):
return compute_normalized_difference_index(n, r) * n
class PSRI(RSIndex):
def _compute(self, b, r, re2):
return (r - b) / (re2 + EPS)
class RI(RSIndex):
def _compute(self, g, r):
return compute_normalized_difference_index(r, g)
class SAVI(RSIndex):
def __init__(self, band_indices, c0):
super(SAVI, self).__init__(band_indices)
self.c0 = c0
def _compute(self, r, n):
num = (1.0 + self.c0) * (n - r)
denom = n + r + self.c0
return num / (denom + EPS)
class SWI(RSIndex):
def _compute(self, g, n, s1):
num = g * (n - s1)
denom = (g + n) * (n + s1)
return num / (denom + EPS)
class TDVI(RSIndex):
def _compute(self, r, n):
num = 1.5 * (n - r)
denom = (n**2.0 + r + 0.5)**0.5
return num / (denom + EPS)
class UI(RSIndex):
def _compute(self, n, s2):
return compute_normalized_difference_index(s2, n)
class VIG(RSIndex):
def _compute(self, g, r):
return compute_normalized_difference_index(g, r)
class WI1(RSIndex):
def _compute(self, g, s2):
return compute_normalized_difference_index(g, s2)
class WI2(RSIndex):
def _compute(self, b, s2):
return compute_normalized_difference_index(b, s2)
class WRI(RSIndex):
def _compute(self, g, r, n, s1):
return (g + r) / (n + s1 + EPS)