You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
395 lines
14 KiB
395 lines
14 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os |
|
import cv2 |
|
import numpy as np |
|
import time |
|
|
|
import paddlers.utils.logging as logging |
|
from paddlers.utils import is_pic |
|
from .det_metrics.coco_utils import loadRes |
|
|
|
|
|
def visualize_detection(image, result, threshold=0.5, save_dir='./', |
|
color=None): |
|
""" |
|
Visualize bbox and mask results |
|
""" |
|
|
|
if isinstance(image, np.ndarray): |
|
image_name = str(int(time.time() * 1000)) + '.jpg' |
|
else: |
|
image_name = os.path.split(image)[-1] |
|
image = cv2.imread(image) |
|
image = draw_bbox_mask(image, result, threshold=threshold, color_map=color) |
|
if save_dir is not None: |
|
if not os.path.exists(save_dir): |
|
os.makedirs(save_dir) |
|
out_path = os.path.join(save_dir, 'visualize_{}'.format(image_name)) |
|
cv2.imwrite(out_path, image) |
|
logging.info('The visualized result is saved at {}'.format(out_path)) |
|
else: |
|
return image |
|
|
|
|
|
def visualize_segmentation(image, result, weight=0.6, save_dir='./', |
|
color=None): |
|
""" |
|
Convert segment result to color image, and save added image. |
|
|
|
Args: |
|
image (str): Path of original image. |
|
result (dict): Predicted results. |
|
weight (float, optional): Weight used to mix the original image with the predicted image. |
|
Defaults to 0.6. |
|
save_dir (str, optional): Directory for saving visualized image. Defaults to './'. |
|
color (list|None): None or list of BGR indices for each label. Defaults to None. |
|
""" |
|
|
|
label_map = result['label_map'].astype("uint8") |
|
color_map = get_color_map_list(256) |
|
if color is not None: |
|
for i in range(len(color) // 3): |
|
color_map[i] = color[i * 3:(i + 1) * 3] |
|
color_map = np.array(color_map).astype("uint8") |
|
|
|
# Use OpenCV LUT for color mapping |
|
c1 = cv2.LUT(label_map, color_map[:, 0]) |
|
c2 = cv2.LUT(label_map, color_map[:, 1]) |
|
c3 = cv2.LUT(label_map, color_map[:, 2]) |
|
pseudo_img = np.dstack((c1, c2, c3)) |
|
|
|
if isinstance(image, np.ndarray): |
|
im = image |
|
image_name = str(int(time.time() * 1000)) + '.jpg' |
|
if image.shape[2] != 3: |
|
logging.info( |
|
"The image is not 3-channel array, so predicted label map is shown as a pseudo color image." |
|
) |
|
weight = 0. |
|
else: |
|
image_name = os.path.split(image)[-1] |
|
if not is_pic(image): |
|
logging.info( |
|
"The image cannot be opened by opencv, so predicted label map is shown as a pseudo color image." |
|
) |
|
image_name = image_name.split('.')[0] + '.jpg' |
|
weight = 0. |
|
else: |
|
im = cv2.imread(image) |
|
|
|
if abs(weight) < 1e-5: |
|
vis_result = pseudo_img |
|
else: |
|
vis_result = cv2.addWeighted(im, weight, |
|
pseudo_img.astype(im.dtype), 1 - weight, 0) |
|
|
|
if save_dir is not None: |
|
if not os.path.exists(save_dir): |
|
os.makedirs(save_dir) |
|
out_path = os.path.join(save_dir, 'visualize_{}'.format(image_name)) |
|
cv2.imwrite(out_path, vis_result) |
|
logging.info('The visualized result is saved as {}'.format(out_path)) |
|
else: |
|
return vis_result |
|
|
|
|
|
def get_color_map_list(num_classes): |
|
""" |
|
Get the color map for visualizing a segmentation mask. |
|
This function supports arbitrary number of classes. |
|
|
|
Args: |
|
num_classes (int): Number of classes. |
|
|
|
Returns: |
|
list: Color map. |
|
""" |
|
|
|
color_map = num_classes * [0, 0, 0] |
|
for i in range(0, num_classes): |
|
j = 0 |
|
lab = i |
|
while lab: |
|
color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) |
|
color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) |
|
color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) |
|
j += 1 |
|
lab >>= 3 |
|
color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] |
|
return color_map |
|
|
|
|
|
def expand_boxes(boxes, scale): |
|
""" |
|
Expand an array of boxes by a given scale. |
|
""" |
|
w_half = (boxes[:, 2] - boxes[:, 0]) * .5 |
|
h_half = (boxes[:, 3] - boxes[:, 1]) * .5 |
|
x_c = (boxes[:, 2] + boxes[:, 0]) * .5 |
|
y_c = (boxes[:, 3] + boxes[:, 1]) * .5 |
|
|
|
w_half *= scale |
|
h_half *= scale |
|
|
|
boxes_exp = np.zeros(boxes.shape) |
|
boxes_exp[:, 0] = x_c - w_half |
|
boxes_exp[:, 2] = x_c + w_half |
|
boxes_exp[:, 1] = y_c - h_half |
|
boxes_exp[:, 3] = y_c + h_half |
|
|
|
return boxes_exp |
|
|
|
|
|
def clip_bbox(bbox): |
|
xmin = max(min(bbox[0], 1.), 0.) |
|
ymin = max(min(bbox[1], 1.), 0.) |
|
xmax = max(min(bbox[2], 1.), 0.) |
|
ymax = max(min(bbox[3], 1.), 0.) |
|
return xmin, ymin, xmax, ymax |
|
|
|
|
|
def draw_bbox_mask(image, results, threshold=0.5, color_map=None): |
|
_SMALL_OBJECT_AREA_THRESH = 1000 |
|
height, width = image.shape[:2] |
|
default_font_scale = max(np.sqrt(height * width) // 900, .5) |
|
linewidth = max(default_font_scale / 40, 2) |
|
|
|
labels = list() |
|
for dt in results: |
|
if dt['category'] not in labels: |
|
labels.append(dt['category']) |
|
|
|
if color_map is None: |
|
color_map = get_color_map_list(len(labels) + 2)[2:] |
|
else: |
|
color_map = np.asarray(color_map) |
|
if np.max(color_map) > 255 or np.min(color_map) < 0: |
|
raise ValueError( |
|
" The values in color_map should be within 0-255 range.") |
|
|
|
keep_results = [] |
|
areas = [] |
|
for dt in results: |
|
cname, bbox, score = dt['category'], dt['bbox'], dt['score'] |
|
if score < threshold: |
|
continue |
|
keep_results.append(dt) |
|
areas.append(bbox[2] * bbox[3]) |
|
areas = np.asarray(areas) |
|
sorted_idxs = np.argsort(-areas).tolist() |
|
keep_results = [keep_results[k] |
|
for k in sorted_idxs] if keep_results else [] |
|
|
|
for dt in keep_results: |
|
cname, bbox, score = dt['category'], dt['bbox'], dt['score'] |
|
bbox = list(map(int, bbox)) |
|
xmin, ymin, w, h = bbox |
|
xmax = xmin + w |
|
ymax = ymin + h |
|
|
|
color = tuple(map(int, color_map[labels.index(cname)])) |
|
# Draw bbox |
|
image = cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, |
|
linewidth) |
|
|
|
# Draw mask |
|
if 'mask' in dt: |
|
mask = dt['mask'] * 255 |
|
image = image.astype('float32') |
|
alpha = .7 |
|
w_ratio = .4 |
|
color_mask = np.asarray(color, dtype=int) |
|
for c in range(3): |
|
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255 |
|
idx = np.nonzero(mask) |
|
image[idx[0], idx[1], :] *= 1.0 - alpha |
|
image[idx[0], idx[1], :] += alpha * color_mask |
|
image = image.astype("uint8") |
|
contours = cv2.findContours( |
|
mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)[-2] |
|
image = cv2.drawContours( |
|
image, |
|
contours, |
|
contourIdx=-1, |
|
color=color, |
|
thickness=1, |
|
lineType=cv2.LINE_AA) |
|
|
|
# Draw label |
|
text_pos = (xmin, ymin) |
|
instance_area = w * h |
|
if (instance_area < _SMALL_OBJECT_AREA_THRESH or h < 40): |
|
if ymin >= height - 5: |
|
text_pos = (xmin, ymin) |
|
else: |
|
text_pos = (xmin, ymax) |
|
height_ratio = h / np.sqrt(height * width) |
|
font_scale = (np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, |
|
2) * 0.5 * default_font_scale) |
|
text = "{} {:.2f}".format(cname, score) |
|
(tw, th), baseline = cv2.getTextSize( |
|
text, |
|
fontFace=cv2.FONT_HERSHEY_DUPLEX, |
|
fontScale=font_scale, |
|
thickness=1) |
|
image = cv2.rectangle( |
|
image, |
|
text_pos, (text_pos[0] + tw, text_pos[1] + th + baseline), |
|
color=color, |
|
thickness=-1) |
|
image = cv2.putText( |
|
image, |
|
text, (text_pos[0], text_pos[1] + th), |
|
fontFace=cv2.FONT_HERSHEY_DUPLEX, |
|
fontScale=font_scale, |
|
color=(255, 255, 255), |
|
thickness=1, |
|
lineType=cv2.LINE_AA) |
|
|
|
return image |
|
|
|
|
|
def draw_pr_curve(eval_details_file=None, |
|
gt=None, |
|
pred_bbox=None, |
|
pred_mask=None, |
|
iou_thresh=0.5, |
|
save_dir='./'): |
|
if eval_details_file is not None: |
|
import json |
|
with open(eval_details_file, 'r') as f: |
|
eval_details = json.load(f) |
|
pred_bbox = eval_details['bbox'] |
|
if 'mask' in eval_details: |
|
pred_mask = eval_details['mask'] |
|
gt = eval_details['gt'] |
|
if gt is None or pred_bbox is None: |
|
raise ValueError( |
|
"gt/pred_bbox/pred_mask is None now, please set right eval_details_file or gt/pred_bbox/pred_mask." |
|
) |
|
if pred_bbox is not None and len(pred_bbox) == 0: |
|
raise ValueError("There is no predicted bbox.") |
|
if pred_mask is not None and len(pred_mask) == 0: |
|
raise ValueError("There is no predicted mask.") |
|
import matplotlib |
|
matplotlib.use('Agg') |
|
import matplotlib.pyplot as plt |
|
from pycocotools.coco import COCO |
|
from pycocotools.cocoeval import COCOeval |
|
coco = COCO() |
|
coco.dataset = gt |
|
coco.createIndex() |
|
|
|
def _summarize(coco_gt, ap=1, iouThr=None, areaRng='all', maxDets=100): |
|
""" |
|
This function has the same functionality as _summarize() in |
|
pycocotools.COCOeval.summarize(). |
|
|
|
Refer to |
|
https://github.com/cocodataset/cocoapi/blob/8c9bcc3cf640524c4c20a9c40e89cb6a2f2fa0e9/PythonAPI/pycocotools/cocoeval.py#L427, |
|
""" |
|
p = coco_gt.params |
|
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng] |
|
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets] |
|
if ap == 1: |
|
# Dimension of precision: [TxRxKxAxM] |
|
s = coco_gt.eval['precision'] |
|
# IoU |
|
if iouThr is not None: |
|
t = np.where(iouThr == p.iouThrs)[0] |
|
s = s[t] |
|
s = s[:, :, :, aind, mind] |
|
else: |
|
# Dimension of recall: [TxKxAxM] |
|
s = coco_gt.eval['recall'] |
|
if iouThr is not None: |
|
t = np.where(iouThr == p.iouThrs)[0] |
|
s = s[t] |
|
s = s[:, :, aind, mind] |
|
if len(s[s > -1]) == 0: |
|
mean_s = -1 |
|
else: |
|
mean_s = np.mean(s[s > -1]) |
|
return mean_s |
|
|
|
def cal_pr(coco_gt, coco_dt, iou_thresh, save_dir, style='bbox'): |
|
coco_dt = loadRes(coco_gt, coco_dt) |
|
coco_eval = COCOeval(coco_gt, coco_dt, style) |
|
coco_eval.params.iouThrs = np.linspace( |
|
iou_thresh, iou_thresh, 1, endpoint=True) |
|
coco_eval.evaluate() |
|
coco_eval.accumulate() |
|
stats = _summarize(coco_eval, iouThr=iou_thresh) |
|
catIds = coco_gt.getCatIds() |
|
if len(catIds) != coco_eval.eval['precision'].shape[2]: |
|
raise ValueError( |
|
"The category number must be same as the third dimension of precisions." |
|
) |
|
x = np.arange(0.0, 1.01, 0.01) |
|
color_map = get_color_map_list(256)[1:256] |
|
|
|
plt.subplot(1, 2, 1) |
|
plt.title(style + " precision-recall IoU={}".format(iou_thresh)) |
|
plt.xlabel("recall") |
|
plt.ylabel("precision") |
|
plt.xlim(0, 1.01) |
|
plt.ylim(0, 1.01) |
|
plt.grid(linestyle='--', linewidth=1) |
|
plt.plot([0, 1], [0, 1], 'r--', linewidth=1) |
|
my_x_ticks = np.arange(0, 1.01, 0.1) |
|
my_y_ticks = np.arange(0, 1.01, 0.1) |
|
plt.xticks(my_x_ticks, fontsize=5) |
|
plt.yticks(my_y_ticks, fontsize=5) |
|
for idx, catId in enumerate(catIds): |
|
pr_array = coco_eval.eval['precision'][0, :, idx, 0, 2] |
|
precision = pr_array[pr_array > -1] |
|
ap = np.mean(precision) if precision.size else float('nan') |
|
nm = coco_gt.loadCats(catId)[0]['name'] + ' AP={:0.2f}'.format( |
|
float(ap * 100)) |
|
color = tuple(color_map[idx]) |
|
color = [float(c) / 255 for c in color] |
|
color.append(0.75) |
|
plt.plot(x, pr_array, color=color, label=nm, linewidth=1) |
|
plt.legend(loc="lower left", fontsize=5) |
|
|
|
plt.subplot(1, 2, 2) |
|
plt.title(style + " score-recall IoU={}".format(iou_thresh)) |
|
plt.xlabel('recall') |
|
plt.ylabel('score') |
|
plt.xlim(0, 1.01) |
|
plt.ylim(0, 1.01) |
|
plt.grid(linestyle='--', linewidth=1) |
|
plt.xticks(my_x_ticks, fontsize=5) |
|
plt.yticks(my_y_ticks, fontsize=5) |
|
for idx, catId in enumerate(catIds): |
|
nm = coco_gt.loadCats(catId)[0]['name'] |
|
sr_array = coco_eval.eval['scores'][0, :, idx, 0, 2] |
|
color = tuple(color_map[idx]) |
|
color = [float(c) / 255 for c in color] |
|
color.append(0.75) |
|
plt.plot(x, sr_array, color=color, label=nm, linewidth=1) |
|
plt.legend(loc="lower left", fontsize=5) |
|
plt.savefig( |
|
os.path.join(save_dir, |
|
"./{}_pr_curve(iou-{}).png".format(style, iou_thresh)), |
|
dpi=800) |
|
plt.close() |
|
|
|
if not os.path.exists(save_dir): |
|
os.makedirs(save_dir) |
|
cal_pr(coco, pred_bbox, iou_thresh, save_dir, style='bbox') |
|
if pred_mask is not None: |
|
cal_pr(coco, pred_mask, iou_thresh, save_dir, style='segm')
|
|
|