You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

81 lines
2.7 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddlers.models.ppseg as paddleseg
def loss_computation(logits_list, labels, losses):
loss_list = []
for i in range(len(logits_list)):
logits = logits_list[i]
loss_i = losses['types'][i]
if isinstance(loss_i, paddleseg.models.MixedLoss):
loss_list.append(losses['coef'][i] * sum(loss_i(logits, labels)))
else:
loss_list.append(losses['coef'][i] * loss_i(logits, labels))
return loss_list
def multitask_loss_computation(logits_list, labels_list, losses):
loss_list = []
for i in range(len(logits_list)):
logits = logits_list[i]
labels = labels_list[i]
loss_i = losses['types'][i]
if isinstance(loss_i, paddleseg.models.MixedLoss):
loss_list.append(losses['coef'][i] * sum(loss_i(logits, labels)))
else:
loss_list.append(losses['coef'][i] * loss_i(logits, labels))
return loss_list
def f1_score(intersect_area, pred_area, label_area):
intersect_area = intersect_area.numpy()
pred_area = pred_area.numpy()
label_area = label_area.numpy()
class_f1_sco = []
for i in range(len(intersect_area)):
if pred_area[i] + label_area[i] == 0:
f1_sco = 0
elif pred_area[i] == 0:
f1_sco = 0
else:
prec = intersect_area[i] / pred_area[i]
rec = intersect_area[i] / label_area[i]
f1_sco = 2 * prec * rec / (prec + rec)
class_f1_sco.append(f1_sco)
return np.array(class_f1_sco)
def confusion_matrix(pred, label, num_classes, ignore_index=255):
label = paddle.transpose(label, (0, 2, 3, 1))
pred = paddle.transpose(pred, (0, 2, 3, 1))
mask = label != ignore_index
label = paddle.masked_select(label, mask)
pred = paddle.masked_select(pred, mask)
cat_matrix = num_classes * label + pred
conf_mat = paddle.histogram(
cat_matrix,
bins=num_classes * num_classes,
min=0,
max=num_classes * num_classes - 1).reshape([num_classes, num_classes])
return conf_mat