You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

642 lines
26 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os.path as osp
from collections import OrderedDict
from operator import itemgetter
import numpy as np
import paddle
import paddle.nn.functional as F
from paddle.static import InputSpec
import paddlers
import paddlers.models.ppcls as ppcls
import paddlers.rs_models.clas as cmcls
import paddlers.utils.logging as logging
from paddlers.utils import get_single_card_bs, DisablePrint
from paddlers.models.ppcls.metric import build_metrics
from paddlers.models import clas_losses
from paddlers.models.ppcls.data.postprocess import build_postprocess
from paddlers.utils.checkpoint import cls_pretrain_weights_dict
from paddlers.transforms import Resize, decode_image
from .base import BaseModel
__all__ = ["ResNet50_vd", "MobileNetV3", "HRNet", "CondenseNetV2"]
class BaseClassifier(BaseModel):
def __init__(self,
model_name,
in_channels=3,
num_classes=2,
use_mixed_loss=False,
losses=None,
**params):
self.init_params = locals()
if 'with_net' in self.init_params:
del self.init_params['with_net']
super(BaseClassifier, self).__init__('classifier')
if not hasattr(ppcls.arch.backbone, model_name) and \
not hasattr(cmcls, model_name):
raise ValueError("ERROR: There is no model named {}.".format(
model_name))
self.model_name = model_name
self.in_channels = in_channels
self.num_classes = num_classes
self.use_mixed_loss = use_mixed_loss
self.metrics = None
self.losses = losses
self.labels = None
self.postprocess = None
if params.get('with_net', True):
params.pop('with_net', None)
self.net = self.build_net(**params)
self.find_unused_parameters = True
def build_net(self, **params):
with paddle.utils.unique_name.guard():
model = dict(ppcls.arch.backbone.__dict__,
**cmcls.__dict__)[self.model_name]
# TODO: Determine whether there is in_channels
try:
net = model(
class_num=self.num_classes,
in_channels=self.in_channels,
**params)
except:
net = model(class_num=self.num_classes, **params)
self.in_channels = 3
return net
def _build_inference_net(self):
infer_net = self.net
infer_net.eval()
return infer_net
def _fix_transforms_shape(self, image_shape):
if hasattr(self, 'test_transforms'):
if self.test_transforms is not None:
has_resize_op = False
resize_op_idx = -1
normalize_op_idx = len(self.test_transforms.transforms)
for idx, op in enumerate(self.test_transforms.transforms):
name = op.__class__.__name__
if name == 'Normalize':
normalize_op_idx = idx
if 'Resize' in name:
has_resize_op = True
resize_op_idx = idx
if not has_resize_op:
self.test_transforms.transforms.insert(
normalize_op_idx, Resize(target_size=image_shape))
else:
self.test_transforms.transforms[resize_op_idx] = Resize(
target_size=image_shape)
def _get_test_inputs(self, image_shape):
if image_shape is not None:
if len(image_shape) == 2:
image_shape = [1, 3] + image_shape
self._fix_transforms_shape(image_shape[-2:])
else:
image_shape = [None, 3, -1, -1]
self.fixed_input_shape = image_shape
input_spec = [
InputSpec(
shape=image_shape, name='image', dtype='float32')
]
return input_spec
def run(self, net, inputs, mode):
net_out = net(inputs[0])
if mode == 'test':
return self.postprocess(net_out)
outputs = OrderedDict()
label = paddle.to_tensor(inputs[1], dtype="int64")
if mode == 'eval':
label = paddle.unsqueeze(label, axis=-1)
metric_dict = self.metrics(net_out, label)
outputs['top1'] = metric_dict["top1"]
outputs['top5'] = metric_dict["top5"]
if mode == 'train':
loss_list = self.losses(net_out, label)
outputs['loss'] = loss_list['loss']
return outputs
def default_metric(self):
default_config = [{"TopkAcc": {"topk": [1, 5]}}]
return build_metrics(default_config)
def default_loss(self):
# TODO: use mixed loss and other loss
default_config = [{"CELoss": {"weight": 1.0}}]
return clas_losses.build_loss(default_config)
def default_optimizer(self,
parameters,
learning_rate,
num_epochs,
num_steps_each_epoch,
last_epoch=-1,
L2_coeff=0.00007):
decay_step = num_epochs * num_steps_each_epoch
lr_scheduler = paddle.optimizer.lr.CosineAnnealingDecay(
learning_rate, T_max=decay_step, eta_min=0, last_epoch=last_epoch)
optimizer = paddle.optimizer.Momentum(
learning_rate=lr_scheduler,
parameters=parameters,
momentum=0.9,
weight_decay=paddle.regularizer.L2Decay(L2_coeff))
return optimizer
def default_postprocess(self):
return self.build_postprocess_from_labels(topk=1)
def build_postprocess_from_labels(self, topk=1):
label_dict = dict()
for i, label in enumerate(self.labels):
label_dict[i] = label
self.postprocess = build_postprocess({
"name": "Topk",
"topk": topk,
"class_id_map_file": None
})
# Add class_id_map from model.yml
self.postprocess.class_id_map = label_dict
def train(self,
num_epochs,
train_dataset,
train_batch_size=2,
eval_dataset=None,
optimizer=None,
save_interval_epochs=1,
log_interval_steps=2,
save_dir='output',
pretrain_weights='IMAGENET',
learning_rate=0.1,
lr_decay_power=0.9,
early_stop=False,
early_stop_patience=5,
use_vdl=True,
resume_checkpoint=None):
"""
Train the model.
Args:
num_epochs (int): Number of epochs.
train_dataset (paddlers.datasets.ClasDataset): Training dataset.
train_batch_size (int, optional): Total batch size among all cards used in
training. Defaults to 2.
eval_dataset (paddlers.datasets.ClasDataset|None, optional): Evaluation dataset.
If None, the model will not be evaluated during training process.
Defaults to None.
optimizer (paddle.optimizer.Optimizer|None, optional): Optimizer used in
training. If None, a default optimizer will be used. Defaults to None.
save_interval_epochs (int, optional): Epoch interval for saving the model.
Defaults to 1.
log_interval_steps (int, optional): Step interval for printing training
information. Defaults to 2.
save_dir (str, optional): Directory to save the model. Defaults to 'output'.
pretrain_weights (str|None, optional): None or name/path of pretrained
weights. If None, no pretrained weights will be loaded.
Defaults to 'IMAGENET'.
learning_rate (float, optional): Learning rate for training.
Defaults to .1.
lr_decay_power (float, optional): Learning decay power. Defaults to .9.
early_stop (bool, optional): Whether to adopt early stop strategy.
Defaults to False.
early_stop_patience (int, optional): Early stop patience. Defaults to 5.
use_vdl (bool, optional): Whether to use VisualDL to monitor the training
process. Defaults to True.
resume_checkpoint (str|None, optional): Path of the checkpoint to resume
training from. If None, no training checkpoint will be resumed. At most
Aone of `resume_checkpoint` and `pretrain_weights` can be set simultaneously.
Defaults to None.
"""
if self.status == 'Infer':
logging.error(
"Exported inference model does not support training.",
exit=True)
if pretrain_weights is not None and resume_checkpoint is not None:
logging.error(
"`pretrain_weights` and `resume_checkpoint` cannot be set simultaneously.",
exit=True)
self.labels = train_dataset.labels
if self.losses is None:
self.losses = self.default_loss()
self.metrics = self.default_metric()
self.postprocess = self.default_postprocess()
if optimizer is None:
num_steps_each_epoch = train_dataset.num_samples // train_batch_size
self.optimizer = self.default_optimizer(
self.net.parameters(), learning_rate, num_epochs,
num_steps_each_epoch, lr_decay_power)
else:
self.optimizer = optimizer
if pretrain_weights is not None:
if not osp.exists(pretrain_weights):
if self.model_name not in cls_pretrain_weights_dict:
logging.warning(
"Path of `pretrain_weights` ('{}') does not exist!".
format(pretrain_weights))
pretrain_weights = None
elif pretrain_weights not in cls_pretrain_weights_dict[
self.model_name]:
logging.warning(
"Path of `pretrain_weights` ('{}') does not exist!".
format(pretrain_weights))
pretrain_weights = cls_pretrain_weights_dict[
self.model_name][0]
logging.warning(
"`pretrain_weights` is forcibly set to '{}'. "
"If you don't want to use pretrained weights, "
"set `pretrain_weights` to None.".format(
pretrain_weights))
else:
if osp.splitext(pretrain_weights)[-1] != '.pdparams':
logging.error(
"Invalid pretrained weights. Please specify a .pdparams file.",
exit=True)
pretrained_dir = osp.join(save_dir, 'pretrain')
is_backbone_weights = False
self.initialize_net(
pretrain_weights=pretrain_weights,
save_dir=pretrained_dir,
resume_checkpoint=resume_checkpoint,
is_backbone_weights=is_backbone_weights)
self.train_loop(
num_epochs=num_epochs,
train_dataset=train_dataset,
train_batch_size=train_batch_size,
eval_dataset=eval_dataset,
save_interval_epochs=save_interval_epochs,
log_interval_steps=log_interval_steps,
save_dir=save_dir,
early_stop=early_stop,
early_stop_patience=early_stop_patience,
use_vdl=use_vdl)
def quant_aware_train(self,
num_epochs,
train_dataset,
train_batch_size=2,
eval_dataset=None,
optimizer=None,
save_interval_epochs=1,
log_interval_steps=2,
save_dir='output',
learning_rate=0.0001,
lr_decay_power=0.9,
early_stop=False,
early_stop_patience=5,
use_vdl=True,
resume_checkpoint=None,
quant_config=None):
"""
Quantization-aware training.
Args:
num_epochs (int): Number of epochs.
train_dataset (paddlers.datasets.ClasDataset): Training dataset.
train_batch_size (int, optional): Total batch size among all cards used in
training. Defaults to 2.
eval_dataset (paddlers.datasets.ClasDataset|None, optional): Evaluation dataset.
If None, the model will not be evaluated during training process.
Defaults to None.
optimizer (paddle.optimizer.Optimizer|None, optional): Optimizer used in
training. If None, a default optimizer will be used. Defaults to None.
save_interval_epochs (int, optional): Epoch interval for saving the model.
Defaults to 1.
log_interval_steps (int, optional): Step interval for printing training
information. Defaults to 2.
save_dir (str, optional): Directory to save the model. Defaults to 'output'.
learning_rate (float, optional): Learning rate for training.
Defaults to .0001.
lr_decay_power (float, optional): Learning decay power. Defaults to .9.
early_stop (bool, optional): Whether to adopt early stop strategy.
Defaults to False.
early_stop_patience (int, optional): Early stop patience. Defaults to 5.
use_vdl (bool, optional): Whether to use VisualDL to monitor the training
process. Defaults to True.
quant_config (dict|None, optional): Quantization configuration. If None,
a default rule of thumb configuration will be used. Defaults to None.
resume_checkpoint (str|None, optional): Path of the checkpoint to resume
quantization-aware training from. If None, no training checkpoint will
be resumed. Defaults to None.
"""
self._prepare_qat(quant_config)
self.train(
num_epochs=num_epochs,
train_dataset=train_dataset,
train_batch_size=train_batch_size,
eval_dataset=eval_dataset,
optimizer=optimizer,
save_interval_epochs=save_interval_epochs,
log_interval_steps=log_interval_steps,
save_dir=save_dir,
pretrain_weights=None,
learning_rate=learning_rate,
lr_decay_power=lr_decay_power,
early_stop=early_stop,
early_stop_patience=early_stop_patience,
use_vdl=use_vdl,
resume_checkpoint=resume_checkpoint)
def evaluate(self, eval_dataset, batch_size=1, return_details=False):
"""
Evaluate the model.
Args:
eval_dataset (paddlers.datasets.ClasDataset): Evaluation dataset.
batch_size (int, optional): Total batch size among all cards used for
evaluation. Defaults to 1.
return_details (bool, optional): Whether to return evaluation details.
Defaults to False.
Returns:
If `return_details` is False, return collections.OrderedDict with
key-value pairs:
{"top1": acc of top1,
"top5": acc of top5}.
"""
self._check_transforms(eval_dataset.transforms, 'eval')
self.net.eval()
nranks = paddle.distributed.get_world_size()
local_rank = paddle.distributed.get_rank()
if nranks > 1:
# Initialize parallel environment if not done.
if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
):
paddle.distributed.init_parallel_env()
if batch_size > 1:
logging.warning(
"Classifier only supports single card evaluation with batch_size=1 "
"during evaluation, so batch_size is forcibly set to 1.")
batch_size = 1
if nranks < 2 or local_rank == 0:
self.eval_data_loader = self.build_data_loader(
eval_dataset, batch_size=batch_size, mode='eval')
logging.info(
"Start to evaluate(total_samples={}, total_steps={})...".format(
eval_dataset.num_samples, eval_dataset.num_samples))
top1s = []
top5s = []
with paddle.no_grad():
for step, data in enumerate(self.eval_data_loader):
data.append(eval_dataset.transforms.transforms)
outputs = self.run(self.net, data, 'eval')
top1s.append(outputs["top1"])
top5s.append(outputs["top5"])
top1 = np.mean(top1s)
top5 = np.mean(top5s)
eval_metrics = OrderedDict(zip(['top1', 'top5'], [top1, top5]))
if return_details:
# TODO: Add details
return eval_metrics, None
return eval_metrics
@paddle.no_grad()
def predict(self, img_file, transforms=None):
"""
Do inference.
Args:
img_file (list[np.ndarray|str] | str | np.ndarray): Image path or decoded
image data, which also could constitute a list, meaning all images to be
predicted as a mini-batch.
transforms (paddlers.transforms.Compose|None, optional): Transforms for
inputs. If None, the transforms for evaluation process will be used.
Defaults to None.
Returns:
If `img_file` is a string or np.array, the result is a dict with the
following key-value pairs:
class_ids_map (np.ndarray): IDs of predicted classes.
scores_map (np.ndarray): Scores of predicted classes.
label_names_map (np.ndarray): Names of predicted classes.
If `img_file` is a list, the result is a list composed of dicts with the
above keys.
"""
if transforms is None and not hasattr(self, 'test_transforms'):
raise ValueError("transforms need to be defined, now is None.")
if transforms is None:
transforms = self.test_transforms
if isinstance(img_file, (str, np.ndarray)):
images = [img_file]
else:
images = img_file
batch_im, batch_origin_shape = self.preprocess(images, transforms,
self.model_type)
self.net.eval()
data = (batch_im, batch_origin_shape, transforms.transforms)
if self.postprocess is None:
self.build_postprocess_from_labels()
outputs = self.run(self.net, data, 'test')
class_ids = map(itemgetter('class_ids'), outputs)
scores = map(itemgetter('scores'), outputs)
label_names = map(itemgetter('label_names'), outputs)
if isinstance(img_file, list):
prediction = [{
'class_ids_map': l,
'scores_map': s,
'label_names_map': n,
} for l, s, n in zip(class_ids, scores, label_names)]
else:
prediction = {
'class_ids_map': next(class_ids),
'scores_map': next(scores),
'label_names_map': next(label_names)
}
return prediction
def preprocess(self, images, transforms, to_tensor=True):
self._check_transforms(transforms, 'test')
batch_im = list()
batch_ori_shape = list()
for im in images:
if isinstance(im, str):
im = decode_image(im, read_raw=True)
ori_shape = im.shape[:2]
sample = {'image': im}
im = transforms(sample)
batch_im.append(im)
batch_ori_shape.append(ori_shape)
if to_tensor:
batch_im = paddle.to_tensor(batch_im)
else:
batch_im = np.asarray(batch_im)
return batch_im, batch_ori_shape
@staticmethod
def get_transforms_shape_info(batch_ori_shape, transforms):
batch_restore_list = list()
for ori_shape in batch_ori_shape:
restore_list = list()
h, w = ori_shape[0], ori_shape[1]
for op in transforms:
if op.__class__.__name__ == 'Resize':
restore_list.append(('resize', (h, w)))
h, w = op.target_size
elif op.__class__.__name__ == 'ResizeByShort':
restore_list.append(('resize', (h, w)))
im_short_size = min(h, w)
im_long_size = max(h, w)
scale = float(op.short_size) / float(im_short_size)
if 0 < op.max_size < np.round(scale * im_long_size):
scale = float(op.max_size) / float(im_long_size)
h = int(round(h * scale))
w = int(round(w * scale))
elif op.__class__.__name__ == 'ResizeByLong':
restore_list.append(('resize', (h, w)))
im_long_size = max(h, w)
scale = float(op.long_size) / float(im_long_size)
h = int(round(h * scale))
w = int(round(w * scale))
elif op.__class__.__name__ == 'Pad':
if op.target_size:
target_h, target_w = op.target_size
else:
target_h = int(
(np.ceil(h / op.size_divisor) * op.size_divisor))
target_w = int(
(np.ceil(w / op.size_divisor) * op.size_divisor))
if op.pad_mode == -1:
offsets = op.offsets
elif op.pad_mode == 0:
offsets = [0, 0]
elif op.pad_mode == 1:
offsets = [(target_h - h) // 2, (target_w - w) // 2]
else:
offsets = [target_h - h, target_w - w]
restore_list.append(('padding', (h, w), offsets))
h, w = target_h, target_w
batch_restore_list.append(restore_list)
return batch_restore_list
def _check_transforms(self, transforms, mode):
super()._check_transforms(transforms, mode)
if not isinstance(transforms.arrange,
paddlers.transforms.ArrangeClassifier):
raise TypeError(
"`transforms.arrange` must be an ArrangeClassifier object.")
def build_data_loader(self, dataset, batch_size, mode='train'):
if dataset.num_samples < batch_size:
raise ValueError(
'The volume of dataset({}) must be larger than batch size({}).'
.format(dataset.num_samples, batch_size))
if mode != 'train':
return paddle.io.DataLoader(
dataset,
batch_size=batch_size,
shuffle=dataset.shuffle,
drop_last=False,
collate_fn=dataset.batch_transforms,
num_workers=dataset.num_workers,
return_list=True,
use_shared_memory=False)
else:
return super(BaseClassifier, self).build_data_loader(
dataset, batch_size, mode)
class ResNet50_vd(BaseClassifier):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
**params):
super(ResNet50_vd, self).__init__(
model_name='ResNet50_vd',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
class MobileNetV3(BaseClassifier):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
**params):
super(MobileNetV3, self).__init__(
model_name='MobileNetV3_small_x1_0',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
class HRNet(BaseClassifier):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
**params):
super(HRNet, self).__init__(
model_name='HRNet_W18_C',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)
class CondenseNetV2(BaseClassifier):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_channels=3,
arch='A',
**params):
if arch not in ('A', 'B', 'C'):
raise ValueError("{} is not a supported architecture.".format(arch))
model_name = 'CondenseNetV2_' + arch
super(CondenseNetV2, self).__init__(
model_name=model_name,
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
in_channels=in_channels,
**params)