You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
112 lines
4.9 KiB
112 lines
4.9 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os |
|
|
|
from paddlers.models.ppseg.datasets import Dataset |
|
from paddlers.models.ppseg.utils.download import download_file_and_uncompress |
|
from paddlers.models.ppseg.utils import seg_env |
|
from paddlers.models.ppseg.cvlibs import manager |
|
from paddlers.models.ppseg.transforms import Compose |
|
|
|
URL = "http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar" |
|
|
|
|
|
@manager.DATASETS.add_component |
|
class PascalVOC(Dataset): |
|
""" |
|
PascalVOC2012 dataset `http://host.robots.ox.ac.uk/pascal/VOC/`. |
|
If you want to augment the dataset, please run the voc_augment.py in tools. |
|
|
|
Args: |
|
transforms (list): Transforms for image. |
|
dataset_root (str): The dataset directory. Default: None |
|
mode (str, optional): Which part of dataset to use. it is one of ('train', 'trainval', 'trainaug', 'val'). |
|
If you want to set mode to 'trainaug', please make sure the dataset have been augmented. Default: 'train'. |
|
edge (bool, optional): Whether to compute edge while training. Default: False |
|
""" |
|
NUM_CLASSES = 21 |
|
|
|
def __init__(self, transforms, dataset_root=None, mode='train', edge=False): |
|
self.dataset_root = dataset_root |
|
self.transforms = Compose(transforms) |
|
mode = mode.lower() |
|
self.mode = mode |
|
self.file_list = list() |
|
self.num_classes = self.NUM_CLASSES |
|
self.ignore_index = 255 |
|
self.edge = edge |
|
|
|
if mode not in ['train', 'trainval', 'trainaug', 'val']: |
|
raise ValueError( |
|
"`mode` should be one of ('train', 'trainval', 'trainaug', 'val') in PascalVOC dataset, but got {}." |
|
.format(mode)) |
|
|
|
if self.transforms is None: |
|
raise ValueError("`transforms` is necessary, but it is None.") |
|
|
|
if self.dataset_root is None: |
|
self.dataset_root = download_file_and_uncompress( |
|
url=URL, |
|
savepath=seg_env.DATA_HOME, |
|
extrapath=seg_env.DATA_HOME, |
|
extraname='VOCdevkit') |
|
elif not os.path.exists(self.dataset_root): |
|
self.dataset_root = os.path.normpath(self.dataset_root) |
|
savepath, extraname = self.dataset_root.rsplit( |
|
sep=os.path.sep, maxsplit=1) |
|
self.dataset_root = download_file_and_uncompress( |
|
url=URL, |
|
savepath=savepath, |
|
extrapath=savepath, |
|
extraname=extraname) |
|
|
|
image_set_dir = os.path.join(self.dataset_root, 'VOC2012', 'ImageSets', |
|
'Segmentation') |
|
if mode == 'train': |
|
file_path = os.path.join(image_set_dir, 'train.txt') |
|
elif mode == 'val': |
|
file_path = os.path.join(image_set_dir, 'val.txt') |
|
elif mode == 'trainval': |
|
file_path = os.path.join(image_set_dir, 'trainval.txt') |
|
elif mode == 'trainaug': |
|
file_path = os.path.join(image_set_dir, 'train.txt') |
|
file_path_aug = os.path.join(image_set_dir, 'aug.txt') |
|
|
|
if not os.path.exists(file_path_aug): |
|
raise RuntimeError( |
|
"When `mode` is 'trainaug', Pascal Voc dataset should be augmented, " |
|
"Please make sure voc_augment.py has been properly run when using this mode." |
|
) |
|
|
|
img_dir = os.path.join(self.dataset_root, 'VOC2012', 'JPEGImages') |
|
label_dir = os.path.join(self.dataset_root, 'VOC2012', |
|
'SegmentationClass') |
|
label_dir_aug = os.path.join(self.dataset_root, 'VOC2012', |
|
'SegmentationClassAug') |
|
|
|
with open(file_path, 'r') as f: |
|
for line in f: |
|
line = line.strip() |
|
image_path = os.path.join(img_dir, ''.join([line, '.jpg'])) |
|
label_path = os.path.join(label_dir, ''.join([line, '.png'])) |
|
self.file_list.append([image_path, label_path]) |
|
if mode == 'trainaug': |
|
with open(file_path_aug, 'r') as f: |
|
for line in f: |
|
line = line.strip() |
|
image_path = os.path.join(img_dir, ''.join([line, '.jpg'])) |
|
label_path = os.path.join(label_dir_aug, |
|
''.join([line, '.png'])) |
|
self.file_list.append([image_path, label_path])
|
|
|