You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

264 lines
10 KiB

# code was heavily based on https://github.com/AliaksandrSiarohin/first-order-model
# Users should be careful about adopting these functions in any commercial matters.
# https://github.com/AliaksandrSiarohin/first-order-model/blob/master/LICENSE.md
import logging
from multiprocessing import Pool
from pathlib import Path
import numpy as np
import tqdm
from imageio import imread, mimread, imwrite
import cv2
from paddle.io import Dataset
from .builder import DATASETS
from .preprocess.builder import build_transforms
import glob, os
POOL_SIZE = 64 # If POOL_SIZE>0 use multiprocessing to extract frames from gif file
@DATASETS.register()
class FirstOrderDataset(Dataset):
def __init__(self, **cfg):
"""Initialize FirstOrder dataset class.
Args:
dataroot (str): Directory of dataset.
phase (str): train or test
num_repeats (int): Number for datasets to repeat
time_flip (bool): whether to exchange the driving image and source image randomly
batch_size (int): dataset batch size
id_sampling (bool): whether to sample person's id
frame_shape (list): image shape
create_frames_folder (bool): if the format of your input datasets is '.mp4', \
you can choose whether to save it with images
num_workers (int): dataset
"""
super(FirstOrderDataset, self).__init__()
self.cfg = cfg
self.frameDataset = FramesDataset(self.cfg)
# create frames folder before 'DatasetRepeater'
if self.cfg['create_frames_folder']:
file_idx_set = [
idx for idx, path in enumerate(self.frameDataset.videos)
if not self.frameDataset.root_dir.joinpath(path).is_dir()
]
file_idx_set = list(file_idx_set)
if len(file_idx_set) != 0:
if POOL_SIZE == 0:
for idx in tqdm.tqdm(
file_idx_set, desc='Extracting frames'):
_ = self.frameDataset[idx]
else:
# multiprocessing
bar = tqdm.tqdm(
total=len(file_idx_set), desc='Extracting frames')
with Pool(POOL_SIZE) as pl:
_p = 0
while _p <= len(file_idx_set) - 1:
_ = pl.map(self.frameDataset.__getitem__,
file_idx_set[_p:_p + POOL_SIZE * 2])
_p = _p + POOL_SIZE * 2
bar.update(POOL_SIZE * 2)
bar.close()
# rewrite video path
self.frameDataset.videos = [
i.with_suffix('') for i in self.frameDataset.videos
]
if self.cfg['phase'] == 'train':
self.outDataset = DatasetRepeater(self.frameDataset,
self.cfg['num_repeats'])
else:
self.outDataset = self.frameDataset
def __len__(self):
return len(self.outDataset)
def __getitem__(self, idx):
return self.outDataset[idx]
def read_video(name: Path, frame_shape=tuple([256, 256, 3]), saveto='folder'):
"""
Read video which can be:
- an image of concatenated frames
- '.mp4' and'.gif'
- folder with videos
"""
if name.is_dir():
frames = sorted(
name.iterdir(), key=lambda x: int(x.with_suffix('').name))
video_array = np.array(
[imread(path) for path in frames], dtype='float32')
return video_array
elif name.suffix.lower() in ['.gif', '.mp4', '.mov']:
try:
video = mimread(name, memtest=False)
except Exception as err:
logging.error('DataLoading File:%s Msg:%s' % (str(name), str(err)))
return None
# convert to 3-channel image
if video[0].shape[-1] == 4:
video = [i[..., :3] for i in video]
elif video[0].shape[-1] == 1:
video = [np.tile(i, (1, 1, 3)) for i in video]
elif len(video[0].shape) == 2:
video = [np.tile(i[..., np.newaxis], (1, 1, 3)) for i in video]
video_array = np.asarray(video)
video_array_reshape = []
for idx, img in enumerate(video_array):
img = cv2.resize(img, (frame_shape[0], frame_shape[1]))
video_array_reshape.append(img.astype(np.uint8))
video_array_reshape = np.asarray(video_array_reshape)
if saveto == 'folder':
sub_dir = name.with_suffix('')
try:
sub_dir.mkdir()
except FileExistsError:
pass
for idx, img in enumerate(video_array_reshape):
cv2.imwrite(
str(sub_dir.joinpath('%i.png' % idx)), img[:, :, [2, 1, 0]])
name.unlink()
return video_array_reshape
else:
raise Exception("Unknown dataset file extensions %s" % name)
class FramesDataset(Dataset):
"""
Dataset of videos, each video can be represented as:
- an image of concatenated frames
- '.mp4' or '.gif'
- folder with all frames
FramesDataset[i]: obtain sample from i-th video in self.videos
"""
def __init__(self, cfg):
self.root_dir = Path(cfg['dataroot'])
self.videos = None
self.frame_shape = tuple(cfg['frame_shape'])
self.id_sampling = cfg['id_sampling']
self.time_flip = cfg['time_flip']
self.is_train = True if cfg['phase'] == 'train' else False
self.pairs_list = cfg.setdefault('pairs_list', None)
self.create_frames_folder = cfg['create_frames_folder']
self.transform = None
random_seed = 0
assert self.root_dir.joinpath('train').exists()
assert self.root_dir.joinpath('test').exists()
logging.info("Use predefined train-test split.")
if self.id_sampling:
train_videos = {
video.name.split('#')[0]
for video in self.root_dir.joinpath('train').iterdir()
}
train_videos = list(train_videos)
else:
train_videos = list(self.root_dir.joinpath('train').iterdir())
test_videos = list(self.root_dir.joinpath('test').iterdir())
self.root_dir = self.root_dir.joinpath('train'
if self.is_train else 'test')
if self.is_train:
self.videos = train_videos
self.transform = build_transforms(cfg['transforms'])
else:
self.videos = test_videos
self.transform = None
def __len__(self):
return len(self.videos)
def __getitem__(self, idx):
if self.is_train and self.id_sampling:
name = self.videos[idx]
path = Path(
np.random.choice(
glob.glob(os.path.join(self.root_dir, name + '*.mp4'))))
else:
path = self.videos[idx]
video_name = path.name
if self.is_train and path.is_dir():
frames = sorted(
path.iterdir(), key=lambda x: int(x.with_suffix('').name))
num_frames = len(frames)
frame_idx = np.sort(
np.random.choice(
num_frames, replace=True, size=2))
video_array = [imread(str(frames[idx])) for idx in frame_idx]
else:
if self.create_frames_folder:
video_array = read_video(
path, frame_shape=self.frame_shape, saveto='folder')
self.videos[idx] = path.with_suffix(
'') # rename /xx/xx/xx.gif -> /xx/xx/xx
else:
video_array = read_video(
path, frame_shape=self.frame_shape, saveto=None)
num_frames = len(video_array)
frame_idx = np.sort(
np.random.choice(
num_frames, replace=True,
size=2)) if self.is_train else range(num_frames)
video_array = [video_array[i] for i in frame_idx]
# convert to 3-channel image
if video_array[0].shape[-1] == 4:
video_array = [i[..., :3] for i in video_array]
elif video_array[0].shape[-1] == 1:
video_array = [np.tile(i, (1, 1, 3)) for i in video_array]
elif len(video_array[0].shape) == 2:
video_array = [
np.tile(i[..., np.newaxis], (1, 1, 3)) for i in video_array
]
out = {}
if self.is_train:
if self.transform is not None: #modify
t = self.transform(tuple(video_array))
out['driving'] = t[0].transpose(2, 0,
1).astype(np.float32) / 255.0
out['source'] = t[1].transpose(2, 0,
1).astype(np.float32) / 255.0
else:
source = np.array(
video_array[0],
dtype='float32') / 255.0 # shape is [H, W, C]
driving = np.array(
video_array[1],
dtype='float32') / 255.0 # shape is [H, W, C]
out['driving'] = driving.transpose(2, 0, 1)
out['source'] = source.transpose(2, 0, 1)
if self.time_flip and np.random.rand() < 0.5: #modify
buf = out['driving']
out['driving'] = out['source']
out['source'] = buf
else:
video = np.stack(video_array, axis=0).astype(np.float32) / 255.0
out['video'] = video.transpose(3, 0, 1, 2)
out['name'] = video_name
return out
def get_sample(self, idx):
return self.__getitem__(idx)
class DatasetRepeater(Dataset):
"""
Pass several times over the same dataset for better i/o performance
"""
def __init__(self, dataset, num_repeats=100):
self.dataset = dataset
self.num_repeats = num_repeats
def __len__(self):
return self.num_repeats * self.dataset.__len__()
def __getitem__(self, idx):
return self.dataset[idx % self.dataset.__len__()]