You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

560 lines
20 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import os.path as osp
import sys
import yaml
import time
import shutil
import requests
import tqdm
import hashlib
import base64
import binascii
import tarfile
import zipfile
from paddle.utils.download import _get_unique_endpoints
from paddlers.models.ppdet.core.workspace import BASE_KEY
from .logger import setup_logger
from .voc_utils import create_list
logger = setup_logger(__name__)
__all__ = [
'get_weights_path', 'get_dataset_path', 'get_config_path',
'download_dataset', 'create_voc_list'
]
WEIGHTS_HOME = osp.expanduser("~/.cache/paddle/weights")
DATASET_HOME = osp.expanduser("~/.cache/paddle/dataset")
CONFIGS_HOME = osp.expanduser("~/.cache/paddle/configs")
# dict of {dataset_name: (download_info, sub_dirs)}
# download info: [(url, md5sum)]
DATASETS = {
'coco': ([
(
'http://images.cocodataset.org/zips/train2017.zip',
'cced6f7f71b7629ddf16f17bbcfab6b2', ),
(
'http://images.cocodataset.org/zips/val2017.zip',
'442b8da7639aecaf257c1dceb8ba8c80', ),
(
'http://images.cocodataset.org/annotations/annotations_trainval2017.zip',
'f4bbac642086de4f52a3fdda2de5fa2c', ),
], ["annotations", "train2017", "val2017"]),
'voc': ([
(
'http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar',
'6cd6e144f989b92b3379bac3b3de84fd', ),
(
'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar',
'c52e279531787c972589f7e41ab4ae64', ),
(
'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar',
'b6e924de25625d8de591ea690078ad9f', ),
(
'https://paddledet.bj.bcebos.com/data/label_list.txt',
'5ae5d62183cfb6f6d3ac109359d06a1b', ),
], ["VOCdevkit/VOC2012", "VOCdevkit/VOC2007"]),
'wider_face': ([
(
'https://dataset.bj.bcebos.com/wider_face/WIDER_train.zip',
'3fedf70df600953d25982bcd13d91ba2', ),
(
'https://dataset.bj.bcebos.com/wider_face/WIDER_val.zip',
'dfa7d7e790efa35df3788964cf0bbaea', ),
(
'https://dataset.bj.bcebos.com/wider_face/wider_face_split.zip',
'a4a898d6193db4b9ef3260a68bad0dc7', ),
], ["WIDER_train", "WIDER_val", "wider_face_split"]),
'fruit': ([(
'https://dataset.bj.bcebos.com/PaddleDetection_demo/fruit.tar',
'baa8806617a54ccf3685fa7153388ae6', ), ],
['Annotations', 'JPEGImages']),
'roadsign_voc': ([(
'https://paddlemodels.bj.bcebos.com/object_detection/roadsign_voc.tar',
'8d629c0f880dd8b48de9aeff44bf1f3e', ), ], ['annotations', 'images']),
'roadsign_coco': ([(
'https://paddlemodels.bj.bcebos.com/object_detection/roadsign_coco.tar',
'49ce5a9b5ad0d6266163cd01de4b018e', ), ], ['annotations', 'images']),
'spine_coco': ([(
'https://paddledet.bj.bcebos.com/data/spine.tar',
'8a3a353c2c54a2284ad7d2780b65f6a6', ), ], ['annotations', 'images']),
'mot': (),
'objects365': (),
'coco_ce': ([(
'https://paddledet.bj.bcebos.com/data/coco_ce.tar',
'eadd1b79bc2f069f2744b1dd4e0c0329', ), ], [])
}
DOWNLOAD_RETRY_LIMIT = 3
PPDET_WEIGHTS_DOWNLOAD_URL_PREFIX = 'https://paddledet.bj.bcebos.com/'
def parse_url(url):
url = url.replace("ppdet://", PPDET_WEIGHTS_DOWNLOAD_URL_PREFIX)
return url
def get_weights_path(url):
"""Get weights path from WEIGHTS_HOME, if not exists,
download it from url.
"""
url = parse_url(url)
path, _ = get_path(url, WEIGHTS_HOME)
return path
def get_config_path(url):
"""Get weights path from CONFIGS_HOME, if not exists,
download it from url.
"""
url = parse_url(url)
path = map_path(url, CONFIGS_HOME, path_depth=2)
if os.path.isfile(path):
return path
# config file not found, try download
# 1. clear configs directory
if osp.isdir(CONFIGS_HOME):
shutil.rmtree(CONFIGS_HOME)
# 2. get url
try:
from paddlers.models.ppdet import __version__ as version
except ImportError:
version = None
cfg_url = "ppdet://configs/{}/configs.tar".format(version) \
if version else "ppdet://configs/configs.tar"
cfg_url = parse_url(cfg_url)
# 3. download and decompress
cfg_fullname = _download_dist(cfg_url, osp.dirname(CONFIGS_HOME))
_decompress_dist(cfg_fullname)
# 4. check config file existing
if os.path.isfile(path):
return path
else:
logger.error("Get config {} failed after download, please contact us on " \
"https://github.com/PaddlePaddle/PaddleDetection/issues".format(path))
sys.exit(1)
def get_dataset_path(path, annotation, image_dir):
"""
If path exists, return path.
Otherwise, get dataset path from DATASET_HOME, if not exists,
download it.
"""
if _dataset_exists(path, annotation, image_dir):
return path
logger.info("Dataset {} is not valid for reason above, try searching {} or "
"downloading dataset...".format(
osp.realpath(path), DATASET_HOME))
data_name = os.path.split(path.strip().lower())[-1]
for name, dataset in DATASETS.items():
if data_name == name:
logger.debug("Parse dataset_dir {} as dataset "
"{}".format(path, name))
if name == 'objects365':
raise NotImplementedError(
"Dataset {} is not valid for download automatically. "
"Please apply and download the dataset from "
"https://www.objects365.org/download.html".format(name))
data_dir = osp.join(DATASET_HOME, name)
if name == 'mot':
if osp.exists(path) or osp.exists(data_dir):
return data_dir
else:
raise NotImplementedError(
"Dataset {} is not valid for download automatically. "
"Please apply and download the dataset following docs/tutorials/PrepareMOTDataSet.md".
format(name))
if name == "spine_coco":
if _dataset_exists(data_dir, annotation, image_dir):
return data_dir
# For voc, only check dir VOCdevkit/VOC2012, VOCdevkit/VOC2007
if name in ['voc', 'fruit', 'roadsign_voc']:
exists = True
for sub_dir in dataset[1]:
check_dir = osp.join(data_dir, sub_dir)
if osp.exists(check_dir):
logger.info("Found {}".format(check_dir))
else:
exists = False
if exists:
return data_dir
# voc exist is checked above, voc is not exist here
check_exist = name != 'voc' and name != 'fruit' and name != 'roadsign_voc'
for url, md5sum in dataset[0]:
get_path(url, data_dir, md5sum, check_exist)
# voc should create list after download
if name == 'voc':
create_voc_list(data_dir)
return data_dir
# not match any dataset in DATASETS
raise ValueError(
"Dataset {} is not valid and cannot parse dataset type "
"'{}' for automaticly downloading, which only supports "
"'voc' , 'coco', 'wider_face', 'fruit', 'roadsign_voc' and 'mot' currently".
format(path, osp.split(path)[-1]))
def create_voc_list(data_dir, devkit_subdir='VOCdevkit'):
logger.debug("Create voc file list...")
devkit_dir = osp.join(data_dir, devkit_subdir)
years = ['2007', '2012']
# NOTE: since using auto download VOC
# dataset, VOC default label list should be used,
# do not generate label_list.txt here. For default
# label, see ../data/source/voc.py
create_list(devkit_dir, years, data_dir)
logger.debug("Create voc file list finished")
def map_path(url, root_dir, path_depth=1):
# parse path after download to decompress under root_dir
assert path_depth > 0, "path_depth should be a positive integer"
dirname = url
for _ in range(path_depth):
dirname = osp.dirname(dirname)
fpath = osp.relpath(url, dirname)
zip_formats = ['.zip', '.tar', '.gz']
for zip_format in zip_formats:
fpath = fpath.replace(zip_format, '')
return osp.join(root_dir, fpath)
def get_path(url, root_dir, md5sum=None, check_exist=True):
""" Download from given url to root_dir.
if file or directory specified by url is exists under
root_dir, return the path directly, otherwise download
from url and decompress it, return the path.
url (str): download url
root_dir (str): root dir for downloading, it should be
WEIGHTS_HOME or DATASET_HOME
md5sum (str): md5 sum of download package
"""
# parse path after download to decompress under root_dir
fullpath = map_path(url, root_dir)
# For same zip file, decompressed directory name different
# from zip file name, rename by following map
decompress_name_map = {
"VOCtrainval_11-May-2012": "VOCdevkit/VOC2012",
"VOCtrainval_06-Nov-2007": "VOCdevkit/VOC2007",
"VOCtest_06-Nov-2007": "VOCdevkit/VOC2007",
"annotations_trainval": "annotations"
}
for k, v in decompress_name_map.items():
if fullpath.find(k) >= 0:
fullpath = osp.join(osp.split(fullpath)[0], v)
if osp.exists(fullpath) and check_exist:
if not osp.isfile(fullpath) or \
_check_exist_file_md5(fullpath, md5sum, url):
logger.debug("Found {}".format(fullpath))
return fullpath, True
else:
os.remove(fullpath)
fullname = _download_dist(url, root_dir, md5sum)
# new weights format which postfix is 'pdparams' not
# need to decompress
if osp.splitext(fullname)[-1] not in ['.pdparams', '.yml']:
_decompress_dist(fullname)
return fullpath, False
def download_dataset(path, dataset=None):
if dataset not in DATASETS.keys():
logger.error("Unknown dataset {}, it should be "
"{}".format(dataset, DATASETS.keys()))
return
dataset_info = DATASETS[dataset][0]
for info in dataset_info:
get_path(info[0], path, info[1], False)
logger.debug("Download dataset {} finished.".format(dataset))
def _dataset_exists(path, annotation, image_dir):
"""
Check if user define dataset exists
"""
if not osp.exists(path):
logger.warning("Config dataset_dir {} is not exits, "
"dataset config is not valid".format(path))
return False
if annotation:
annotation_path = osp.join(path, annotation)
if not osp.isfile(annotation_path):
logger.warning("Config annotation {} is not a "
"file, dataset config is not "
"valid".format(annotation_path))
return False
if image_dir:
image_path = osp.join(path, image_dir)
if not osp.isdir(image_path):
logger.warning("Config image_dir {} is not a "
"directory, dataset config is not "
"valid".format(image_path))
return False
return True
def _download(url, path, md5sum=None):
"""
Download from url, save to path.
url (str): download url
path (str): download to given path
"""
if not osp.exists(path):
os.makedirs(path)
fname = osp.split(url)[-1]
fullname = osp.join(path, fname)
retry_cnt = 0
while not (osp.exists(fullname) and _check_exist_file_md5(fullname, md5sum,
url)):
if retry_cnt < DOWNLOAD_RETRY_LIMIT:
retry_cnt += 1
else:
raise RuntimeError("Download from {} failed. "
"Retry limit reached".format(url))
logger.info("Downloading {} from {}".format(fname, url))
# NOTE: windows path join may incur \, which is invalid in url
if sys.platform == "win32":
url = url.replace('\\', '/')
req = requests.get(url, stream=True)
if req.status_code != 200:
raise RuntimeError("Downloading from {} failed with code "
"{}!".format(url, req.status_code))
# For protecting download interupted, download to
# tmp_fullname firstly, move tmp_fullname to fullname
# after download finished
tmp_fullname = fullname + "_tmp"
total_size = req.headers.get('content-length')
with open(tmp_fullname, 'wb') as f:
if total_size:
for chunk in tqdm.tqdm(
req.iter_content(chunk_size=1024),
total=(int(total_size) + 1023) // 1024,
unit='KB'):
f.write(chunk)
else:
for chunk in req.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
shutil.move(tmp_fullname, fullname)
return fullname
def _download_dist(url, path, md5sum=None):
env = os.environ
if 'PADDLE_TRAINERS_NUM' in env and 'PADDLE_TRAINER_ID' in env:
# Mainly used to solve the problem of downloading data from
# different machines in the case of multiple machines.
# Different nodes will download data, and the same node
# will only download data once.
# Reference https://github.com/PaddlePaddle/PaddleClas/blob/release/2.5/ppcls/utils/download.py#L108
rank_id_curr_node = int(os.environ.get("PADDLE_RANK_IN_NODE", 0))
num_trainers = int(env['PADDLE_TRAINERS_NUM'])
if num_trainers <= 1:
return _download(url, path, md5sum)
else:
fname = osp.split(url)[-1]
fullname = osp.join(path, fname)
lock_path = fullname + '.download.lock'
if not osp.isdir(path):
os.makedirs(path)
if not osp.exists(fullname):
with open(lock_path, 'w'): # touch
os.utime(lock_path, None)
if rank_id_curr_node == 0:
_download(url, path, md5sum)
os.remove(lock_path)
else:
while os.path.exists(lock_path):
time.sleep(0.5)
return fullname
else:
return _download(url, path, md5sum)
def _check_exist_file_md5(filename, md5sum, url):
# if md5sum is None, and file to check is weights file,
# read md5um from url and check, else check md5sum directly
return _md5check_from_url(filename, url) if md5sum is None \
and filename.endswith('pdparams') \
else _md5check(filename, md5sum)
def _md5check_from_url(filename, url):
# For weights in bcebos URLs, MD5 value is contained
# in request header as 'content_md5'
req = requests.get(url, stream=True)
content_md5 = req.headers.get('content-md5')
req.close()
if not content_md5 or _md5check(
filename,
binascii.hexlify(base64.b64decode(content_md5.strip('"'))).decode(
)):
return True
else:
return False
def _md5check(fullname, md5sum=None):
if md5sum is None:
return True
logger.debug("File {} md5 checking...".format(fullname))
md5 = hashlib.md5()
with open(fullname, 'rb') as f:
for chunk in iter(lambda: f.read(4096), b""):
md5.update(chunk)
calc_md5sum = md5.hexdigest()
if calc_md5sum != md5sum:
logger.warning("File {} md5 check failed, {}(calc) != "
"{}(base)".format(fullname, calc_md5sum, md5sum))
return False
return True
def _decompress(fname):
"""
Decompress for zip and tar file
"""
logger.info("Decompressing {}...".format(fname))
# For protecting decompressing interupted,
# decompress to fpath_tmp directory firstly, if decompress
# successed, move decompress files to fpath and delete
# fpath_tmp and remove download compress file.
fpath = osp.split(fname)[0]
fpath_tmp = osp.join(fpath, 'tmp')
if osp.isdir(fpath_tmp):
shutil.rmtree(fpath_tmp)
os.makedirs(fpath_tmp)
if fname.find('tar') >= 0:
with tarfile.open(fname) as tf:
tf.extractall(path=fpath_tmp)
elif fname.find('zip') >= 0:
with zipfile.ZipFile(fname) as zf:
zf.extractall(path=fpath_tmp)
elif fname.find('.txt') >= 0:
return
else:
raise TypeError("Unsupport compress file type {}".format(fname))
for f in os.listdir(fpath_tmp):
src_dir = osp.join(fpath_tmp, f)
dst_dir = osp.join(fpath, f)
_move_and_merge_tree(src_dir, dst_dir)
shutil.rmtree(fpath_tmp)
os.remove(fname)
def _decompress_dist(fname):
env = os.environ
if 'PADDLE_TRAINERS_NUM' in env and 'PADDLE_TRAINER_ID' in env:
trainer_id = int(env['PADDLE_TRAINER_ID'])
num_trainers = int(env['PADDLE_TRAINERS_NUM'])
if num_trainers <= 1:
_decompress(fname)
else:
lock_path = fname + '.decompress.lock'
from paddle.distributed import ParallelEnv
unique_endpoints = _get_unique_endpoints(ParallelEnv()
.trainer_endpoints[:])
# NOTE(dkp): _decompress_dist always performed after
# _download_dist, in _download_dist sub-trainers is waiting
# for download lock file release with sleeping, if decompress
# prograss is very fast and finished with in the sleeping gap
# time, e.g in tiny dataset such as coco_ce, spine_coco, main
# trainer may finish decompress and release lock file, so we
# only craete lock file in main trainer and all sub-trainer
# wait 1s for main trainer to create lock file, for 1s is
# twice as sleeping gap, this waiting time can keep all
# trainer pipeline in order
# **change this if you have more elegent methods**
if ParallelEnv().current_endpoint in unique_endpoints:
with open(lock_path, 'w'): # touch
os.utime(lock_path, None)
_decompress(fname)
os.remove(lock_path)
else:
time.sleep(1)
while os.path.exists(lock_path):
time.sleep(0.5)
else:
_decompress(fname)
def _move_and_merge_tree(src, dst):
"""
Move src directory to dst, if dst is already exists,
merge src to dst
"""
if not osp.exists(dst):
shutil.move(src, dst)
elif osp.isfile(src):
shutil.move(src, dst)
else:
for fp in os.listdir(src):
src_fp = osp.join(src, fp)
dst_fp = osp.join(dst, fp)
if osp.isdir(src_fp):
if osp.isdir(dst_fp):
_move_and_merge_tree(src_fp, dst_fp)
else:
shutil.move(src_fp, dst_fp)
elif osp.isfile(src_fp) and \
not osp.isfile(dst_fp):
shutil.move(src_fp, dst_fp)