You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
745 lines
30 KiB
745 lines
30 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
# |
|
# The code is based on https://github.com/csuhan/s2anet/blob/master/mmdet/models/anchor_heads_rotated/s2anet_head.py |
|
|
|
import paddle |
|
from paddle import ParamAttr |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
from paddle.nn.initializer import Normal, Constant |
|
from paddlers.models.ppdet.core.workspace import register |
|
from paddlers.models.ppdet.modeling.proposal_generator.target_layer import RBoxAssigner |
|
from paddlers.models.ppdet.modeling.proposal_generator.anchor_generator import S2ANetAnchorGenerator |
|
from paddlers.models.ppdet.modeling.layers import AlignConv |
|
from ..cls_utils import _get_class_default_kwargs |
|
import numpy as np |
|
|
|
|
|
@register |
|
class S2ANetHead(nn.Layer): |
|
""" |
|
S2Anet head |
|
Args: |
|
stacked_convs (int): number of stacked_convs |
|
feat_in (int): input channels of feat |
|
feat_out (int): output channels of feat |
|
num_classes (int): num_classes |
|
anchor_strides (list): stride of anchors |
|
anchor_scales (list): scale of anchors |
|
anchor_ratios (list): ratios of anchors |
|
target_means (list): target_means |
|
target_stds (list): target_stds |
|
align_conv_type (str): align_conv_type ['Conv', 'AlignConv'] |
|
align_conv_size (int): kernel size of align_conv |
|
use_sigmoid_cls (bool): use sigmoid_cls or not |
|
reg_loss_weight (list): loss weight for regression |
|
""" |
|
__shared__ = ['num_classes'] |
|
__inject__ = ['anchor_assign', 'nms'] |
|
|
|
def __init__(self, |
|
stacked_convs=2, |
|
feat_in=256, |
|
feat_out=256, |
|
num_classes=15, |
|
anchor_strides=[8, 16, 32, 64, 128], |
|
anchor_scales=[4], |
|
anchor_ratios=[1.0], |
|
target_means=0.0, |
|
target_stds=1.0, |
|
align_conv_type='AlignConv', |
|
align_conv_size=3, |
|
use_sigmoid_cls=True, |
|
anchor_assign=_get_class_default_kwargs(RBoxAssigner), |
|
reg_loss_weight=[1.0, 1.0, 1.0, 1.0, 1.1], |
|
cls_loss_weight=[1.1, 1.05], |
|
reg_loss_type='l1', |
|
nms_pre=2000, |
|
nms='MultiClassNMS'): |
|
super(S2ANetHead, self).__init__() |
|
self.stacked_convs = stacked_convs |
|
self.feat_in = feat_in |
|
self.feat_out = feat_out |
|
self.anchor_list = None |
|
self.anchor_scales = anchor_scales |
|
self.anchor_ratios = anchor_ratios |
|
self.anchor_strides = anchor_strides |
|
self.anchor_strides = paddle.to_tensor(anchor_strides) |
|
self.anchor_base_sizes = list(anchor_strides) |
|
self.means = paddle.ones(shape=[5]) * target_means |
|
self.stds = paddle.ones(shape=[5]) * target_stds |
|
assert align_conv_type in ['AlignConv', 'Conv', 'DCN'] |
|
self.align_conv_type = align_conv_type |
|
self.align_conv_size = align_conv_size |
|
|
|
self.use_sigmoid_cls = use_sigmoid_cls |
|
self.cls_out_channels = num_classes if self.use_sigmoid_cls else num_classes + 1 |
|
self.sampling = False |
|
self.anchor_assign = anchor_assign |
|
self.reg_loss_weight = reg_loss_weight |
|
self.cls_loss_weight = cls_loss_weight |
|
self.alpha = 1.0 |
|
self.beta = 1.0 |
|
self.reg_loss_type = reg_loss_type |
|
self.nms_pre = nms_pre |
|
self.nms = nms |
|
self.fake_bbox = paddle.to_tensor( |
|
np.array( |
|
[[-1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], |
|
dtype='float32')) |
|
self.fake_bbox_num = paddle.to_tensor(np.array([1], dtype='int32')) |
|
|
|
# anchor |
|
self.anchor_generators = [] |
|
for anchor_base in self.anchor_base_sizes: |
|
self.anchor_generators.append( |
|
S2ANetAnchorGenerator(anchor_base, anchor_scales, |
|
anchor_ratios)) |
|
|
|
self.anchor_generators = nn.LayerList(self.anchor_generators) |
|
self.fam_cls_convs = nn.Sequential() |
|
self.fam_reg_convs = nn.Sequential() |
|
|
|
for i in range(self.stacked_convs): |
|
chan_in = self.feat_in if i == 0 else self.feat_out |
|
|
|
self.fam_cls_convs.add_sublayer( |
|
'fam_cls_conv_{}'.format(i), |
|
nn.Conv2D( |
|
in_channels=chan_in, |
|
out_channels=self.feat_out, |
|
kernel_size=3, |
|
padding=1, |
|
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)), |
|
bias_attr=ParamAttr(initializer=Constant(0)))) |
|
|
|
self.fam_cls_convs.add_sublayer('fam_cls_conv_{}_act'.format(i), |
|
nn.ReLU()) |
|
|
|
self.fam_reg_convs.add_sublayer( |
|
'fam_reg_conv_{}'.format(i), |
|
nn.Conv2D( |
|
in_channels=chan_in, |
|
out_channels=self.feat_out, |
|
kernel_size=3, |
|
padding=1, |
|
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)), |
|
bias_attr=ParamAttr(initializer=Constant(0)))) |
|
|
|
self.fam_reg_convs.add_sublayer('fam_reg_conv_{}_act'.format(i), |
|
nn.ReLU()) |
|
|
|
self.fam_reg = nn.Conv2D( |
|
self.feat_out, |
|
5, |
|
1, |
|
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)), |
|
bias_attr=ParamAttr(initializer=Constant(0))) |
|
prior_prob = 0.01 |
|
bias_init = float(-np.log((1 - prior_prob) / prior_prob)) |
|
self.fam_cls = nn.Conv2D( |
|
self.feat_out, |
|
self.cls_out_channels, |
|
1, |
|
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)), |
|
bias_attr=ParamAttr(initializer=Constant(bias_init))) |
|
|
|
if self.align_conv_type == "AlignConv": |
|
self.align_conv = AlignConv(self.feat_out, self.feat_out, |
|
self.align_conv_size) |
|
elif self.align_conv_type == "Conv": |
|
self.align_conv = nn.Conv2D( |
|
self.feat_out, |
|
self.feat_out, |
|
self.align_conv_size, |
|
padding=(self.align_conv_size - 1) // 2, |
|
bias_attr=ParamAttr(initializer=Constant(0))) |
|
|
|
elif self.align_conv_type == "DCN": |
|
self.align_conv_offset = nn.Conv2D( |
|
self.feat_out, |
|
2 * self.align_conv_size**2, |
|
1, |
|
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)), |
|
bias_attr=ParamAttr(initializer=Constant(0))) |
|
|
|
self.align_conv = paddle.vision.ops.DeformConv2D( |
|
self.feat_out, |
|
self.feat_out, |
|
self.align_conv_size, |
|
padding=(self.align_conv_size - 1) // 2, |
|
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)), |
|
bias_attr=False) |
|
|
|
self.or_conv = nn.Conv2D( |
|
self.feat_out, |
|
self.feat_out, |
|
kernel_size=3, |
|
padding=1, |
|
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)), |
|
bias_attr=ParamAttr(initializer=Constant(0))) |
|
|
|
# ODM |
|
self.odm_cls_convs = nn.Sequential() |
|
self.odm_reg_convs = nn.Sequential() |
|
|
|
for i in range(self.stacked_convs): |
|
ch_in = self.feat_out |
|
# ch_in = int(self.feat_out / 8) if i == 0 else self.feat_out |
|
|
|
self.odm_cls_convs.add_sublayer( |
|
'odm_cls_conv_{}'.format(i), |
|
nn.Conv2D( |
|
in_channels=ch_in, |
|
out_channels=self.feat_out, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)), |
|
bias_attr=ParamAttr(initializer=Constant(0)))) |
|
|
|
self.odm_cls_convs.add_sublayer('odm_cls_conv_{}_act'.format(i), |
|
nn.ReLU()) |
|
|
|
self.odm_reg_convs.add_sublayer( |
|
'odm_reg_conv_{}'.format(i), |
|
nn.Conv2D( |
|
in_channels=self.feat_out, |
|
out_channels=self.feat_out, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)), |
|
bias_attr=ParamAttr(initializer=Constant(0)))) |
|
|
|
self.odm_reg_convs.add_sublayer('odm_reg_conv_{}_act'.format(i), |
|
nn.ReLU()) |
|
|
|
self.odm_cls = nn.Conv2D( |
|
self.feat_out, |
|
self.cls_out_channels, |
|
3, |
|
padding=1, |
|
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)), |
|
bias_attr=ParamAttr(initializer=Constant(bias_init))) |
|
self.odm_reg = nn.Conv2D( |
|
self.feat_out, |
|
5, |
|
3, |
|
padding=1, |
|
weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)), |
|
bias_attr=ParamAttr(initializer=Constant(0))) |
|
|
|
def forward(self, feats, targets=None): |
|
fam_reg_list, fam_cls_list = [], [] |
|
odm_reg_list, odm_cls_list = [], [] |
|
num_anchors_list, base_anchors_list, refine_anchors_list = [], [], [] |
|
|
|
for i, feat in enumerate(feats): |
|
# get shape |
|
B = feat.shape[0] |
|
H, W = paddle.shape(feat)[2], paddle.shape(feat)[3] |
|
|
|
NA = H * W |
|
num_anchors_list.append(NA) |
|
|
|
fam_cls_feat = self.fam_cls_convs(feat) |
|
fam_cls = self.fam_cls(fam_cls_feat) |
|
# [N, CLS, H, W] --> [N, H, W, CLS] |
|
fam_cls = fam_cls.transpose([0, 2, 3, 1]).reshape( |
|
[B, NA, self.cls_out_channels]) |
|
fam_cls_list.append(fam_cls) |
|
|
|
fam_reg_feat = self.fam_reg_convs(feat) |
|
fam_reg = self.fam_reg(fam_reg_feat) |
|
# [N, 5, H, W] --> [N, H, W, 5] |
|
fam_reg = fam_reg.transpose([0, 2, 3, 1]).reshape([B, NA, 5]) |
|
fam_reg_list.append(fam_reg) |
|
|
|
# prepare anchor |
|
init_anchors = self.anchor_generators[i]((H, W), |
|
self.anchor_strides[i]) |
|
init_anchors = init_anchors.reshape([1, NA, 5]) |
|
base_anchors_list.append(init_anchors.squeeze(0)) |
|
|
|
if self.training: |
|
refine_anchor = self.bbox_decode(fam_reg.detach(), init_anchors) |
|
else: |
|
refine_anchor = self.bbox_decode(fam_reg, init_anchors) |
|
|
|
refine_anchors_list.append(refine_anchor) |
|
|
|
if self.align_conv_type == 'AlignConv': |
|
align_feat = self.align_conv(feat, |
|
refine_anchor.clone(), (H, W), |
|
self.anchor_strides[i]) |
|
elif self.align_conv_type == 'DCN': |
|
align_offset = self.align_conv_offset(feat) |
|
align_feat = self.align_conv(feat, align_offset) |
|
elif self.align_conv_type == 'Conv': |
|
align_feat = self.align_conv(feat) |
|
|
|
or_feat = self.or_conv(align_feat) |
|
odm_reg_feat = or_feat |
|
odm_cls_feat = or_feat |
|
|
|
odm_reg_feat = self.odm_reg_convs(odm_reg_feat) |
|
odm_cls_feat = self.odm_cls_convs(odm_cls_feat) |
|
|
|
odm_cls = self.odm_cls(odm_cls_feat) |
|
# [N, CLS, H, W] --> [N, H, W, CLS] |
|
odm_cls = odm_cls.transpose([0, 2, 3, 1]).reshape( |
|
[B, NA, self.cls_out_channels]) |
|
odm_cls_list.append(odm_cls) |
|
|
|
odm_reg = self.odm_reg(odm_reg_feat) |
|
# [N, 5, H, W] --> [N, H, W, 5] |
|
odm_reg = odm_reg.transpose([0, 2, 3, 1]).reshape([B, NA, 5]) |
|
odm_reg_list.append(odm_reg) |
|
|
|
if self.training: |
|
return self.get_loss([ |
|
fam_cls_list, fam_reg_list, odm_cls_list, odm_reg_list, |
|
num_anchors_list, base_anchors_list, refine_anchors_list |
|
], targets) |
|
else: |
|
odm_bboxes_list = [] |
|
for odm_reg, refine_anchor in zip(odm_reg_list, |
|
refine_anchors_list): |
|
odm_bboxes = self.bbox_decode(odm_reg, refine_anchor) |
|
odm_bboxes_list.append(odm_bboxes) |
|
return [odm_bboxes_list, odm_cls_list] |
|
|
|
def get_bboxes(self, head_outs): |
|
perd_bboxes_list, pred_scores_list = head_outs |
|
batch = paddle.shape(pred_scores_list[0])[0] |
|
bboxes, bbox_num = [], [] |
|
for i in range(batch): |
|
pred_scores_per_image = [t[i] for t in pred_scores_list] |
|
pred_bboxes_per_image = [t[i] for t in perd_bboxes_list] |
|
bbox_per_image, bbox_num_per_image = self.get_bboxes_single( |
|
pred_scores_per_image, pred_bboxes_per_image) |
|
bboxes.append(bbox_per_image) |
|
bbox_num.append(bbox_num_per_image) |
|
|
|
bboxes = paddle.concat(bboxes) |
|
bbox_num = paddle.concat(bbox_num) |
|
return bboxes, bbox_num |
|
|
|
def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): |
|
""" |
|
Rescale, clip and filter the bbox from the output of NMS to |
|
get final prediction. |
|
Args: |
|
bboxes(Tensor): bboxes [N, 10] |
|
bbox_num(Tensor): bbox_num |
|
im_shape(Tensor): [1 2] |
|
scale_factor(Tensor): [1 2] |
|
Returns: |
|
bbox_pred(Tensor): The output is the prediction with shape [N, 8] |
|
including labels, scores and bboxes. The size of |
|
bboxes are corresponding to the original image. |
|
""" |
|
origin_shape = paddle.floor(im_shape / scale_factor + 0.5) |
|
|
|
origin_shape_list = [] |
|
scale_factor_list = [] |
|
# scale_factor: scale_y, scale_x |
|
for i in range(bbox_num.shape[0]): |
|
expand_shape = paddle.expand(origin_shape[i:i + 1, :], |
|
[bbox_num[i], 2]) |
|
scale_y, scale_x = scale_factor[i][0], scale_factor[i][1] |
|
scale = paddle.concat([ |
|
scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x, |
|
scale_y |
|
]) |
|
expand_scale = paddle.expand(scale, [bbox_num[i], 8]) |
|
origin_shape_list.append(expand_shape) |
|
scale_factor_list.append(expand_scale) |
|
|
|
origin_shape_list = paddle.concat(origin_shape_list) |
|
scale_factor_list = paddle.concat(scale_factor_list) |
|
|
|
# bboxes: [N, 10], label, score, bbox |
|
pred_label_score = bboxes[:, 0:2] |
|
pred_bbox = bboxes[:, 2:] |
|
|
|
# rescale bbox to original image |
|
pred_bbox = pred_bbox.reshape([-1, 8]) |
|
scaled_bbox = pred_bbox / scale_factor_list |
|
origin_h = origin_shape_list[:, 0] |
|
origin_w = origin_shape_list[:, 1] |
|
|
|
bboxes = scaled_bbox |
|
zeros = paddle.zeros_like(origin_h) |
|
x1 = paddle.maximum(paddle.minimum(bboxes[:, 0], origin_w - 1), zeros) |
|
y1 = paddle.maximum(paddle.minimum(bboxes[:, 1], origin_h - 1), zeros) |
|
x2 = paddle.maximum(paddle.minimum(bboxes[:, 2], origin_w - 1), zeros) |
|
y2 = paddle.maximum(paddle.minimum(bboxes[:, 3], origin_h - 1), zeros) |
|
x3 = paddle.maximum(paddle.minimum(bboxes[:, 4], origin_w - 1), zeros) |
|
y3 = paddle.maximum(paddle.minimum(bboxes[:, 5], origin_h - 1), zeros) |
|
x4 = paddle.maximum(paddle.minimum(bboxes[:, 6], origin_w - 1), zeros) |
|
y4 = paddle.maximum(paddle.minimum(bboxes[:, 7], origin_h - 1), zeros) |
|
pred_bbox = paddle.stack([x1, y1, x2, y2, x3, y3, x4, y4], axis=-1) |
|
pred_result = paddle.concat([pred_label_score, pred_bbox], axis=1) |
|
return pred_result |
|
|
|
def get_bboxes_single(self, cls_score_list, bbox_pred_list): |
|
mlvl_bboxes = [] |
|
mlvl_scores = [] |
|
|
|
for cls_score, bbox_pred in zip(cls_score_list, bbox_pred_list): |
|
if self.use_sigmoid_cls: |
|
scores = F.sigmoid(cls_score) |
|
else: |
|
scores = F.softmax(cls_score, axis=-1) |
|
|
|
if scores.shape[0] > self.nms_pre: |
|
# Get maximum scores for foreground classes. |
|
if self.use_sigmoid_cls: |
|
max_scores = paddle.max(scores, axis=1) |
|
else: |
|
max_scores = paddle.max(scores[:, :-1], axis=1) |
|
|
|
topk_val, topk_inds = paddle.topk(max_scores, self.nms_pre) |
|
bbox_pred = paddle.gather(bbox_pred, topk_inds) |
|
scores = paddle.gather(scores, topk_inds) |
|
|
|
mlvl_bboxes.append(bbox_pred) |
|
mlvl_scores.append(scores) |
|
|
|
mlvl_bboxes = paddle.concat(mlvl_bboxes) |
|
mlvl_scores = paddle.concat(mlvl_scores) |
|
|
|
mlvl_polys = self.rbox2poly(mlvl_bboxes).unsqueeze(0) |
|
mlvl_scores = paddle.transpose(mlvl_scores, [1, 0]).unsqueeze(0) |
|
|
|
bbox, bbox_num, _ = self.nms(mlvl_polys, mlvl_scores) |
|
if bbox.shape[0] <= 0: |
|
bbox = self.fake_bbox |
|
bbox_num = self.fake_bbox_num |
|
|
|
return bbox, bbox_num |
|
|
|
def smooth_l1_loss(self, pred, label, delta=1.0 / 9.0): |
|
""" |
|
Args: |
|
pred: pred score |
|
label: label |
|
delta: delta |
|
Returns: loss |
|
""" |
|
assert pred.shape == label.shape and label.numel() > 0 |
|
assert delta > 0 |
|
diff = paddle.abs(pred - label) |
|
loss = paddle.where(diff < delta, 0.5 * diff * diff / delta, |
|
diff - 0.5 * delta) |
|
return loss |
|
|
|
def get_fam_loss(self, fam_target, s2anet_head_out, reg_loss_type='l1'): |
|
(labels, label_weights, bbox_targets, bbox_weights, bbox_gt_bboxes, |
|
pos_inds, neg_inds) = fam_target |
|
fam_cls_branch_list, fam_reg_branch_list, odm_cls_branch_list, odm_reg_branch_list, num_anchors_list = s2anet_head_out |
|
|
|
fam_cls_losses = [] |
|
fam_bbox_losses = [] |
|
st_idx = 0 |
|
num_total_samples = len(pos_inds) + len( |
|
neg_inds) if self.sampling else len(pos_inds) |
|
num_total_samples = max(1, num_total_samples) |
|
|
|
for idx, feat_anchor_num in enumerate(num_anchors_list): |
|
# step1: get data |
|
feat_labels = labels[st_idx:st_idx + feat_anchor_num] |
|
feat_label_weights = label_weights[st_idx:st_idx + feat_anchor_num] |
|
|
|
feat_bbox_targets = bbox_targets[st_idx:st_idx + feat_anchor_num, :] |
|
feat_bbox_weights = bbox_weights[st_idx:st_idx + feat_anchor_num, :] |
|
|
|
# step2: calc cls loss |
|
feat_labels = feat_labels.reshape(-1) |
|
feat_label_weights = feat_label_weights.reshape(-1) |
|
|
|
fam_cls_score = fam_cls_branch_list[idx] |
|
fam_cls_score = paddle.squeeze(fam_cls_score, axis=0) |
|
fam_cls_score1 = fam_cls_score |
|
|
|
feat_labels = paddle.to_tensor(feat_labels) |
|
feat_labels_one_hot = paddle.nn.functional.one_hot( |
|
feat_labels, self.cls_out_channels + 1) |
|
feat_labels_one_hot = feat_labels_one_hot[:, 1:] |
|
feat_labels_one_hot.stop_gradient = True |
|
|
|
num_total_samples = paddle.to_tensor( |
|
num_total_samples, dtype='float32', stop_gradient=True) |
|
|
|
fam_cls = F.sigmoid_focal_loss( |
|
fam_cls_score1, |
|
feat_labels_one_hot, |
|
normalizer=num_total_samples, |
|
reduction='none') |
|
|
|
feat_label_weights = feat_label_weights.reshape( |
|
feat_label_weights.shape[0], 1) |
|
feat_label_weights = np.repeat( |
|
feat_label_weights, self.cls_out_channels, axis=1) |
|
feat_label_weights = paddle.to_tensor( |
|
feat_label_weights, stop_gradient=True) |
|
|
|
fam_cls = fam_cls * feat_label_weights |
|
fam_cls_total = paddle.sum(fam_cls) |
|
fam_cls_losses.append(fam_cls_total) |
|
|
|
# step3: regression loss |
|
feat_bbox_targets = paddle.to_tensor( |
|
feat_bbox_targets, dtype='float32', stop_gradient=True) |
|
feat_bbox_targets = paddle.reshape(feat_bbox_targets, [-1, 5]) |
|
|
|
fam_bbox_pred = fam_reg_branch_list[idx] |
|
fam_bbox_pred = paddle.squeeze(fam_bbox_pred, axis=0) |
|
fam_bbox_pred = paddle.reshape(fam_bbox_pred, [-1, 5]) |
|
fam_bbox = self.smooth_l1_loss(fam_bbox_pred, feat_bbox_targets) |
|
loss_weight = paddle.to_tensor( |
|
self.reg_loss_weight, dtype='float32', stop_gradient=True) |
|
fam_bbox = paddle.multiply(fam_bbox, loss_weight) |
|
feat_bbox_weights = paddle.to_tensor( |
|
feat_bbox_weights, stop_gradient=True) |
|
|
|
fam_bbox = fam_bbox * feat_bbox_weights |
|
fam_bbox_total = paddle.sum(fam_bbox) / num_total_samples |
|
fam_bbox_losses.append(fam_bbox_total) |
|
st_idx += feat_anchor_num |
|
|
|
fam_cls_loss = paddle.add_n(fam_cls_losses) |
|
fam_cls_loss_weight = paddle.to_tensor( |
|
self.cls_loss_weight[0], dtype='float32', stop_gradient=True) |
|
fam_cls_loss = fam_cls_loss * fam_cls_loss_weight |
|
fam_reg_loss = paddle.add_n(fam_bbox_losses) |
|
return fam_cls_loss, fam_reg_loss |
|
|
|
def get_odm_loss(self, odm_target, s2anet_head_out, reg_loss_type='l1'): |
|
(labels, label_weights, bbox_targets, bbox_weights, bbox_gt_bboxes, |
|
pos_inds, neg_inds) = odm_target |
|
fam_cls_branch_list, fam_reg_branch_list, odm_cls_branch_list, odm_reg_branch_list, num_anchors_list = s2anet_head_out |
|
|
|
odm_cls_losses = [] |
|
odm_bbox_losses = [] |
|
st_idx = 0 |
|
num_total_samples = len(pos_inds) + len( |
|
neg_inds) if self.sampling else len(pos_inds) |
|
num_total_samples = max(1, num_total_samples) |
|
|
|
for idx, feat_anchor_num in enumerate(num_anchors_list): |
|
# step1: get data |
|
feat_labels = labels[st_idx:st_idx + feat_anchor_num] |
|
feat_label_weights = label_weights[st_idx:st_idx + feat_anchor_num] |
|
|
|
feat_bbox_targets = bbox_targets[st_idx:st_idx + feat_anchor_num, :] |
|
feat_bbox_weights = bbox_weights[st_idx:st_idx + feat_anchor_num, :] |
|
|
|
# step2: calc cls loss |
|
feat_labels = feat_labels.reshape(-1) |
|
feat_label_weights = feat_label_weights.reshape(-1) |
|
|
|
odm_cls_score = odm_cls_branch_list[idx] |
|
odm_cls_score = paddle.squeeze(odm_cls_score, axis=0) |
|
odm_cls_score1 = odm_cls_score |
|
|
|
feat_labels = paddle.to_tensor(feat_labels) |
|
feat_labels_one_hot = paddle.nn.functional.one_hot( |
|
feat_labels, self.cls_out_channels + 1) |
|
feat_labels_one_hot = feat_labels_one_hot[:, 1:] |
|
feat_labels_one_hot.stop_gradient = True |
|
|
|
num_total_samples = paddle.to_tensor( |
|
num_total_samples, dtype='float32', stop_gradient=True) |
|
odm_cls = F.sigmoid_focal_loss( |
|
odm_cls_score1, |
|
feat_labels_one_hot, |
|
normalizer=num_total_samples, |
|
reduction='none') |
|
|
|
feat_label_weights = feat_label_weights.reshape( |
|
feat_label_weights.shape[0], 1) |
|
feat_label_weights = np.repeat( |
|
feat_label_weights, self.cls_out_channels, axis=1) |
|
feat_label_weights = paddle.to_tensor(feat_label_weights) |
|
feat_label_weights.stop_gradient = True |
|
|
|
odm_cls = odm_cls * feat_label_weights |
|
odm_cls_total = paddle.sum(odm_cls) |
|
odm_cls_losses.append(odm_cls_total) |
|
|
|
# # step3: regression loss |
|
feat_bbox_targets = paddle.to_tensor( |
|
feat_bbox_targets, dtype='float32') |
|
feat_bbox_targets = paddle.reshape(feat_bbox_targets, [-1, 5]) |
|
feat_bbox_targets.stop_gradient = True |
|
|
|
odm_bbox_pred = odm_reg_branch_list[idx] |
|
odm_bbox_pred = paddle.squeeze(odm_bbox_pred, axis=0) |
|
odm_bbox_pred = paddle.reshape(odm_bbox_pred, [-1, 5]) |
|
odm_bbox = self.smooth_l1_loss(odm_bbox_pred, feat_bbox_targets) |
|
|
|
loss_weight = paddle.to_tensor( |
|
self.reg_loss_weight, dtype='float32', stop_gradient=True) |
|
odm_bbox = paddle.multiply(odm_bbox, loss_weight) |
|
feat_bbox_weights = paddle.to_tensor( |
|
feat_bbox_weights, stop_gradient=True) |
|
|
|
odm_bbox = odm_bbox * feat_bbox_weights |
|
odm_bbox_total = paddle.sum(odm_bbox) / num_total_samples |
|
|
|
odm_bbox_losses.append(odm_bbox_total) |
|
st_idx += feat_anchor_num |
|
|
|
odm_cls_loss = paddle.add_n(odm_cls_losses) |
|
odm_cls_loss_weight = paddle.to_tensor( |
|
self.cls_loss_weight[1], dtype='float32', stop_gradient=True) |
|
odm_cls_loss = odm_cls_loss * odm_cls_loss_weight |
|
odm_reg_loss = paddle.add_n(odm_bbox_losses) |
|
return odm_cls_loss, odm_reg_loss |
|
|
|
def get_loss(self, head_outs, inputs): |
|
fam_cls_list, fam_reg_list, odm_cls_list, odm_reg_list, \ |
|
num_anchors_list, base_anchors_list, refine_anchors_list = head_outs |
|
|
|
# compute loss |
|
fam_cls_loss_lst = [] |
|
fam_reg_loss_lst = [] |
|
odm_cls_loss_lst = [] |
|
odm_reg_loss_lst = [] |
|
|
|
batch = len(inputs['gt_rbox']) |
|
for i in range(batch): |
|
# data_format: (xc, yc, w, h, theta) |
|
gt_mask = inputs['pad_gt_mask'][i, :, 0] |
|
gt_idx = paddle.nonzero(gt_mask).squeeze(-1) |
|
gt_bboxes = paddle.gather(inputs['gt_rbox'][i], gt_idx).numpy() |
|
gt_labels = paddle.gather(inputs['gt_class'][i], gt_idx).numpy() |
|
is_crowd = paddle.gather(inputs['is_crowd'][i], gt_idx).numpy() |
|
gt_labels = gt_labels + 1 |
|
|
|
anchors_per_image = np.concatenate(base_anchors_list) |
|
|
|
fam_cls_per_image = [t[i] for t in fam_cls_list] |
|
fam_reg_per_image = [t[i] for t in fam_reg_list] |
|
odm_cls_per_image = [t[i] for t in odm_cls_list] |
|
odm_reg_per_image = [t[i] for t in odm_reg_list] |
|
im_s2anet_head_out = (fam_cls_per_image, fam_reg_per_image, |
|
odm_cls_per_image, odm_reg_per_image, |
|
num_anchors_list) |
|
# FAM |
|
im_fam_target = self.anchor_assign(anchors_per_image, gt_bboxes, |
|
gt_labels, is_crowd) |
|
if im_fam_target is not None: |
|
im_fam_cls_loss, im_fam_reg_loss = self.get_fam_loss( |
|
im_fam_target, im_s2anet_head_out, self.reg_loss_type) |
|
fam_cls_loss_lst.append(im_fam_cls_loss) |
|
fam_reg_loss_lst.append(im_fam_reg_loss) |
|
|
|
# ODM |
|
refine_anchors_per_image = [t[i] for t in refine_anchors_list] |
|
refine_anchors_per_image = paddle.concat( |
|
refine_anchors_per_image).numpy() |
|
im_odm_target = self.anchor_assign(refine_anchors_per_image, |
|
gt_bboxes, gt_labels, is_crowd) |
|
|
|
if im_odm_target is not None: |
|
im_odm_cls_loss, im_odm_reg_loss = self.get_odm_loss( |
|
im_odm_target, im_s2anet_head_out, self.reg_loss_type) |
|
odm_cls_loss_lst.append(im_odm_cls_loss) |
|
odm_reg_loss_lst.append(im_odm_reg_loss) |
|
|
|
fam_cls_loss = paddle.add_n(fam_cls_loss_lst) / batch |
|
fam_reg_loss = paddle.add_n(fam_reg_loss_lst) / batch |
|
odm_cls_loss = paddle.add_n(odm_cls_loss_lst) / batch |
|
odm_reg_loss = paddle.add_n(odm_reg_loss_lst) / batch |
|
loss = fam_cls_loss + fam_reg_loss + odm_cls_loss + odm_reg_loss |
|
|
|
return { |
|
'loss': loss, |
|
'fam_cls_loss': fam_cls_loss, |
|
'fam_reg_loss': fam_reg_loss, |
|
'odm_cls_loss': odm_cls_loss, |
|
'odm_reg_loss': odm_reg_loss |
|
} |
|
|
|
def bbox_decode(self, preds, anchors, wh_ratio_clip=1e-6): |
|
"""decode bbox from deltas |
|
Args: |
|
preds: [B, L, 5] |
|
anchors: [1, L, 5] |
|
return: |
|
bboxes: [B, L, 5] |
|
""" |
|
preds = paddle.add(paddle.multiply(preds, self.stds), self.means) |
|
|
|
dx, dy, dw, dh, dangle = paddle.split(preds, 5, axis=-1) |
|
max_ratio = np.abs(np.log(wh_ratio_clip)) |
|
dw = paddle.clip(dw, min=-max_ratio, max=max_ratio) |
|
dh = paddle.clip(dh, min=-max_ratio, max=max_ratio) |
|
|
|
rroi_x, rroi_y, rroi_w, rroi_h, rroi_angle = paddle.split( |
|
anchors, 5, axis=-1) |
|
|
|
gx = dx * rroi_w * paddle.cos(rroi_angle) - dy * rroi_h * paddle.sin( |
|
rroi_angle) + rroi_x |
|
gy = dx * rroi_w * paddle.sin(rroi_angle) + dy * rroi_h * paddle.cos( |
|
rroi_angle) + rroi_y |
|
gw = rroi_w * dw.exp() |
|
gh = rroi_h * dh.exp() |
|
ga = np.pi * dangle + rroi_angle |
|
ga = (ga + np.pi / 4) % np.pi - np.pi / 4 |
|
bboxes = paddle.concat([gx, gy, gw, gh, ga], axis=-1) |
|
return bboxes |
|
|
|
def rbox2poly(self, rboxes): |
|
""" |
|
rboxes: [x_ctr,y_ctr,w,h,angle] |
|
to |
|
polys: [x0,y0,x1,y1,x2,y2,x3,y3] |
|
""" |
|
N = paddle.shape(rboxes)[0] |
|
|
|
x_ctr = rboxes[:, 0] |
|
y_ctr = rboxes[:, 1] |
|
width = rboxes[:, 2] |
|
height = rboxes[:, 3] |
|
angle = rboxes[:, 4] |
|
|
|
tl_x, tl_y, br_x, br_y = -width * 0.5, -height * 0.5, width * 0.5, height * 0.5 |
|
|
|
normal_rects = paddle.stack( |
|
[tl_x, br_x, br_x, tl_x, tl_y, tl_y, br_y, br_y], axis=0) |
|
normal_rects = paddle.reshape(normal_rects, [2, 4, N]) |
|
normal_rects = paddle.transpose(normal_rects, [2, 0, 1]) |
|
|
|
sin, cos = paddle.sin(angle), paddle.cos(angle) |
|
# M: [N,2,2] |
|
M = paddle.stack([cos, -sin, sin, cos], axis=0) |
|
M = paddle.reshape(M, [2, 2, N]) |
|
M = paddle.transpose(M, [2, 0, 1]) |
|
|
|
# polys: [N,8] |
|
polys = paddle.matmul(M, normal_rects) |
|
polys = paddle.transpose(polys, [2, 1, 0]) |
|
polys = paddle.reshape(polys, [-1, N]) |
|
polys = paddle.transpose(polys, [1, 0]) |
|
|
|
tmp = paddle.stack( |
|
[x_ctr, y_ctr, x_ctr, y_ctr, x_ctr, y_ctr, x_ctr, y_ctr], axis=1) |
|
polys = polys + tmp |
|
return polys
|
|
|