You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

505 lines
19 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import json
import paddle
import numpy as np
import typing
from collections import defaultdict
from pathlib import Path
from .map_utils import prune_zero_padding, DetectionMAP
from .coco_utils import get_infer_results, cocoapi_eval
from .widerface_utils import face_eval_run
from paddlers.models.ppdet.data.source.category import get_categories
from paddlers.models.ppdet.modeling.rbox_utils import poly2rbox_np
from paddlers.models.ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = [
'Metric', 'COCOMetric', 'VOCMetric', 'WiderFaceMetric', 'get_infer_results',
'RBoxMetric', 'SNIPERCOCOMetric'
]
COCO_SIGMAS = np.array([
.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87,
.89, .89
]) / 10.0
CROWD_SIGMAS = np.array(
[.79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89, .79,
.79]) / 10.0
class Metric(paddle.metric.Metric):
def name(self):
return self.__class__.__name__
def reset(self):
pass
def accumulate(self):
pass
# paddle.metric.Metric defined :metch:`update`, :meth:`accumulate`
# :metch:`reset`, in ppdet, we also need following 2 methods:
# abstract method for logging metric results
def log(self):
pass
# abstract method for getting metric results
def get_results(self):
pass
class COCOMetric(Metric):
def __init__(self, anno_file, **kwargs):
self.anno_file = anno_file
self.clsid2catid = kwargs.get('clsid2catid', None)
if self.clsid2catid is None:
self.clsid2catid, _ = get_categories('COCO', anno_file)
self.classwise = kwargs.get('classwise', False)
self.output_eval = kwargs.get('output_eval', None)
# TODO: bias should be unified
self.bias = kwargs.get('bias', 0)
self.save_prediction_only = kwargs.get('save_prediction_only', False)
self.iou_type = kwargs.get('IouType', 'bbox')
if not self.save_prediction_only:
assert os.path.isfile(anno_file), \
"anno_file {} not a file".format(anno_file)
if self.output_eval is not None:
Path(self.output_eval).mkdir(exist_ok=True)
self.reset()
def reset(self):
# only bbox and mask evaluation support currently
self.results = {'bbox': [], 'mask': [], 'segm': [], 'keypoint': []}
self.eval_results = {}
def update(self, inputs, outputs):
outs = {}
# outputs Tensor -> numpy.ndarray
for k, v in outputs.items():
outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v
# multi-scale inputs: all inputs have same im_id
if isinstance(inputs, typing.Sequence):
im_id = inputs[0]['im_id']
else:
im_id = inputs['im_id']
outs['im_id'] = im_id.numpy() if isinstance(im_id,
paddle.Tensor) else im_id
infer_results = get_infer_results(
outs, self.clsid2catid, bias=self.bias)
self.results['bbox'] += infer_results[
'bbox'] if 'bbox' in infer_results else []
self.results['mask'] += infer_results[
'mask'] if 'mask' in infer_results else []
self.results['segm'] += infer_results[
'segm'] if 'segm' in infer_results else []
self.results['keypoint'] += infer_results[
'keypoint'] if 'keypoint' in infer_results else []
def accumulate(self):
if len(self.results['bbox']) > 0:
output = "bbox.json"
if self.output_eval:
output = os.path.join(self.output_eval, output)
with open(output, 'w') as f:
json.dump(self.results['bbox'], f)
logger.info('The bbox result is saved to bbox.json.')
if self.save_prediction_only:
logger.info('The bbox result is saved to {} and do not '
'evaluate the mAP.'.format(output))
else:
bbox_stats = cocoapi_eval(
output,
'bbox',
anno_file=self.anno_file,
classwise=self.classwise)
self.eval_results['bbox'] = bbox_stats
sys.stdout.flush()
if len(self.results['mask']) > 0:
output = "mask.json"
if self.output_eval:
output = os.path.join(self.output_eval, output)
with open(output, 'w') as f:
json.dump(self.results['mask'], f)
logger.info('The mask result is saved to mask.json.')
if self.save_prediction_only:
logger.info('The mask result is saved to {} and do not '
'evaluate the mAP.'.format(output))
else:
seg_stats = cocoapi_eval(
output,
'segm',
anno_file=self.anno_file,
classwise=self.classwise)
self.eval_results['mask'] = seg_stats
sys.stdout.flush()
if len(self.results['segm']) > 0:
output = "segm.json"
if self.output_eval:
output = os.path.join(self.output_eval, output)
with open(output, 'w') as f:
json.dump(self.results['segm'], f)
logger.info('The segm result is saved to segm.json.')
if self.save_prediction_only:
logger.info('The segm result is saved to {} and do not '
'evaluate the mAP.'.format(output))
else:
seg_stats = cocoapi_eval(
output,
'segm',
anno_file=self.anno_file,
classwise=self.classwise)
self.eval_results['mask'] = seg_stats
sys.stdout.flush()
if len(self.results['keypoint']) > 0:
output = "keypoint.json"
if self.output_eval:
output = os.path.join(self.output_eval, output)
with open(output, 'w') as f:
json.dump(self.results['keypoint'], f)
logger.info('The keypoint result is saved to keypoint.json.')
if self.save_prediction_only:
logger.info('The keypoint result is saved to {} and do not '
'evaluate the mAP.'.format(output))
else:
style = 'keypoints'
use_area = True
sigmas = COCO_SIGMAS
if self.iou_type == 'keypoints_crowd':
style = 'keypoints_crowd'
use_area = False
sigmas = CROWD_SIGMAS
keypoint_stats = cocoapi_eval(
output,
style,
anno_file=self.anno_file,
classwise=self.classwise,
sigmas=sigmas,
use_area=use_area)
self.eval_results['keypoint'] = keypoint_stats
sys.stdout.flush()
def log(self):
pass
def get_results(self):
return self.eval_results
class VOCMetric(Metric):
def __init__(self,
label_list,
class_num=20,
overlap_thresh=0.5,
map_type='11point',
is_bbox_normalized=False,
evaluate_difficult=False,
classwise=False,
output_eval=None,
save_prediction_only=False):
assert os.path.isfile(label_list), \
"label_list {} not a file".format(label_list)
self.clsid2catid, self.catid2name = get_categories('VOC', label_list)
self.overlap_thresh = overlap_thresh
self.map_type = map_type
self.evaluate_difficult = evaluate_difficult
self.output_eval = output_eval
self.save_prediction_only = save_prediction_only
self.detection_map = DetectionMAP(
class_num=class_num,
overlap_thresh=overlap_thresh,
map_type=map_type,
is_bbox_normalized=is_bbox_normalized,
evaluate_difficult=evaluate_difficult,
catid2name=self.catid2name,
classwise=classwise)
self.reset()
def reset(self):
self.results = {'bbox': [], 'score': [], 'label': []}
self.detection_map.reset()
def update(self, inputs, outputs):
bbox_np = outputs['bbox'].numpy() if isinstance(
outputs['bbox'], paddle.Tensor) else outputs['bbox']
bboxes = bbox_np[:, 2:]
scores = bbox_np[:, 1]
labels = bbox_np[:, 0]
bbox_lengths = outputs['bbox_num'].numpy() if isinstance(
outputs['bbox_num'], paddle.Tensor) else outputs['bbox_num']
self.results['bbox'].append(bboxes.tolist())
self.results['score'].append(scores.tolist())
self.results['label'].append(labels.tolist())
if bboxes.shape == (1, 1) or bboxes is None:
return
if self.save_prediction_only:
return
gt_boxes = inputs['gt_bbox']
gt_labels = inputs['gt_class']
difficults = inputs['difficult'] if not self.evaluate_difficult \
else None
if 'scale_factor' in inputs:
scale_factor = inputs['scale_factor'].numpy() if isinstance(
inputs['scale_factor'],
paddle.Tensor) else inputs['scale_factor']
else:
scale_factor = np.ones((gt_boxes.shape[0], 2)).astype('float32')
bbox_idx = 0
for i in range(len(gt_boxes)):
gt_box = gt_boxes[i].numpy() if isinstance(
gt_boxes[i], paddle.Tensor) else gt_boxes[i]
h, w = scale_factor[i]
gt_box = gt_box / np.array([w, h, w, h])
gt_label = gt_labels[i].numpy() if isinstance(
gt_labels[i], paddle.Tensor) else gt_labels[i]
if difficults is not None:
difficult = difficults[i].numpy() if isinstance(
difficults[i], paddle.Tensor) else difficults[i]
else:
difficult = None
bbox_num = bbox_lengths[i]
bbox = bboxes[bbox_idx:bbox_idx + bbox_num]
score = scores[bbox_idx:bbox_idx + bbox_num]
label = labels[bbox_idx:bbox_idx + bbox_num]
gt_box, gt_label, difficult = prune_zero_padding(gt_box, gt_label,
difficult)
self.detection_map.update(bbox, score, label, gt_box, gt_label,
difficult)
bbox_idx += bbox_num
def accumulate(self):
output = "bbox.json"
if self.output_eval:
output = os.path.join(self.output_eval, output)
with open(output, 'w') as f:
json.dump(self.results, f)
logger.info('The bbox result is saved to bbox.json.')
if self.save_prediction_only:
return
logger.info("Accumulating evaluatation results...")
self.detection_map.accumulate()
def log(self):
map_stat = 100. * self.detection_map.get_map()
logger.info("mAP({:.2f}, {}) = {:.2f}%".format(self.overlap_thresh,
self.map_type, map_stat))
def get_results(self):
return {'bbox': [self.detection_map.get_map()]}
class WiderFaceMetric(Metric):
def __init__(self, image_dir, anno_file, multi_scale=True):
self.image_dir = image_dir
self.anno_file = anno_file
self.multi_scale = multi_scale
self.clsid2catid, self.catid2name = get_categories('widerface')
def update(self, model):
face_eval_run(
model,
self.image_dir,
self.anno_file,
pred_dir='output/pred',
eval_mode='widerface',
multi_scale=self.multi_scale)
class RBoxMetric(Metric):
def __init__(self, anno_file, **kwargs):
self.anno_file = anno_file
self.clsid2catid, self.catid2name = get_categories('COCO', anno_file)
self.catid2clsid = {v: k for k, v in self.clsid2catid.items()}
self.classwise = kwargs.get('classwise', False)
self.output_eval = kwargs.get('output_eval', None)
self.save_prediction_only = kwargs.get('save_prediction_only', False)
self.overlap_thresh = kwargs.get('overlap_thresh', 0.5)
self.map_type = kwargs.get('map_type', '11point')
self.evaluate_difficult = kwargs.get('evaluate_difficult', False)
self.imid2path = kwargs.get('imid2path', None)
class_num = len(self.catid2name)
self.detection_map = DetectionMAP(
class_num=class_num,
overlap_thresh=self.overlap_thresh,
map_type=self.map_type,
is_bbox_normalized=False,
evaluate_difficult=self.evaluate_difficult,
catid2name=self.catid2name,
classwise=self.classwise)
self.reset()
def reset(self):
self.results = []
self.detection_map.reset()
def update(self, inputs, outputs):
outs = {}
# outputs Tensor -> numpy.ndarray
for k, v in outputs.items():
outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v
im_id = inputs['im_id']
im_id = im_id.numpy() if isinstance(im_id, paddle.Tensor) else im_id
outs['im_id'] = im_id
infer_results = get_infer_results(outs, self.clsid2catid)
infer_results = infer_results['bbox'] if 'bbox' in infer_results else []
self.results += infer_results
if self.save_prediction_only:
return
gt_boxes = inputs['gt_poly']
gt_labels = inputs['gt_class']
if 'scale_factor' in inputs:
scale_factor = inputs['scale_factor'].numpy() if isinstance(
inputs['scale_factor'],
paddle.Tensor) else inputs['scale_factor']
else:
scale_factor = np.ones((gt_boxes.shape[0], 2)).astype('float32')
for i in range(len(gt_boxes)):
gt_box = gt_boxes[i].numpy() if isinstance(
gt_boxes[i], paddle.Tensor) else gt_boxes[i]
h, w = scale_factor[i]
gt_box = gt_box / np.array([w, h, w, h, w, h, w, h])
gt_label = gt_labels[i].numpy() if isinstance(
gt_labels[i], paddle.Tensor) else gt_labels[i]
gt_box, gt_label, _ = prune_zero_padding(gt_box, gt_label)
bbox = [
res['bbox'] for res in infer_results
if int(res['image_id']) == int(im_id[i])
]
score = [
res['score'] for res in infer_results
if int(res['image_id']) == int(im_id[i])
]
label = [
self.catid2clsid[int(res['category_id'])]
for res in infer_results
if int(res['image_id']) == int(im_id[i])
]
self.detection_map.update(bbox, score, label, gt_box, gt_label)
def save_results(self, results, output_dir, imid2path):
if imid2path:
data_dicts = defaultdict(list)
for result in results:
image_id = result['image_id']
data_dicts[image_id].append(result)
for image_id, image_path in imid2path.items():
basename = os.path.splitext(os.path.split(image_path)[-1])[0]
output = os.path.join(output_dir, "{}.txt".format(basename))
dets = data_dicts.get(image_id, [])
with open(output, 'w') as f:
for det in dets:
catid, bbox, score = det['category_id'], det[
'bbox'], det['score']
bbox_pred = '{} {} '.format(self.catid2name[catid],
score) + ' '.join(
[str(e) for e in bbox])
f.write(bbox_pred + '\n')
logger.info('The bbox result is saved to {}.'.format(output_dir))
else:
output = os.path.join(output_dir, "bbox.json")
with open(output, 'w') as f:
json.dump(results, f)
logger.info('The bbox result is saved to {}.'.format(output))
def accumulate(self):
if self.output_eval:
self.save_results(self.results, self.output_eval, self.imid2path)
if not self.save_prediction_only:
logger.info("Accumulating evaluatation results...")
self.detection_map.accumulate()
def log(self):
map_stat = 100. * self.detection_map.get_map()
logger.info("mAP({:.2f}, {}) = {:.2f}%".format(self.overlap_thresh,
self.map_type, map_stat))
def get_results(self):
return {'bbox': [self.detection_map.get_map()]}
class SNIPERCOCOMetric(COCOMetric):
def __init__(self, anno_file, **kwargs):
super(SNIPERCOCOMetric, self).__init__(anno_file, **kwargs)
self.dataset = kwargs["dataset"]
self.chip_results = []
def reset(self):
# only bbox and mask evaluation support currently
self.results = {'bbox': [], 'mask': [], 'segm': [], 'keypoint': []}
self.eval_results = {}
self.chip_results = []
def update(self, inputs, outputs):
outs = {}
# outputs Tensor -> numpy.ndarray
for k, v in outputs.items():
outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v
im_id = inputs['im_id']
outs['im_id'] = im_id.numpy() if isinstance(im_id,
paddle.Tensor) else im_id
self.chip_results.append(outs)
def accumulate(self):
results = self.dataset.anno_cropper.aggregate_chips_detections(
self.chip_results)
for outs in results:
infer_results = get_infer_results(
outs, self.clsid2catid, bias=self.bias)
self.results['bbox'] += infer_results[
'bbox'] if 'bbox' in infer_results else []
super(SNIPERCOCOMetric, self).accumulate()