You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
435 lines
15 KiB
435 lines
15 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
from __future__ import unicode_literals |
|
|
|
import os |
|
import sys |
|
import numpy as np |
|
import itertools |
|
import paddle |
|
from paddlers.models.ppdet.modeling.rbox_utils import poly2rbox_np |
|
|
|
from paddlers.models.ppdet.utils.logger import setup_logger |
|
logger = setup_logger(__name__) |
|
|
|
__all__ = [ |
|
'draw_pr_curve', |
|
'bbox_area', |
|
'jaccard_overlap', |
|
'prune_zero_padding', |
|
'DetectionMAP', |
|
'ap_per_class', |
|
'compute_ap', |
|
] |
|
|
|
|
|
def draw_pr_curve(precision, |
|
recall, |
|
iou=0.5, |
|
out_dir='pr_curve', |
|
file_name='precision_recall_curve.jpg'): |
|
if not os.path.exists(out_dir): |
|
os.makedirs(out_dir) |
|
output_path = os.path.join(out_dir, file_name) |
|
try: |
|
import matplotlib.pyplot as plt |
|
except Exception as e: |
|
logger.error('Matplotlib not found, plaese install matplotlib.' |
|
'for example: `pip install matplotlib`.') |
|
raise e |
|
plt.cla() |
|
plt.figure('P-R Curve') |
|
plt.title('Precision/Recall Curve(IoU={})'.format(iou)) |
|
plt.xlabel('Recall') |
|
plt.ylabel('Precision') |
|
plt.grid(True) |
|
plt.plot(recall, precision) |
|
plt.savefig(output_path) |
|
|
|
|
|
def bbox_area(bbox, is_bbox_normalized): |
|
""" |
|
Calculate area of a bounding box |
|
""" |
|
norm = 1. - float(is_bbox_normalized) |
|
width = bbox[2] - bbox[0] + norm |
|
height = bbox[3] - bbox[1] + norm |
|
return width * height |
|
|
|
|
|
def jaccard_overlap(pred, gt, is_bbox_normalized=False): |
|
""" |
|
Calculate jaccard overlap ratio between two bounding box |
|
""" |
|
if pred[0] >= gt[2] or pred[2] <= gt[0] or \ |
|
pred[1] >= gt[3] or pred[3] <= gt[1]: |
|
return 0. |
|
inter_xmin = max(pred[0], gt[0]) |
|
inter_ymin = max(pred[1], gt[1]) |
|
inter_xmax = min(pred[2], gt[2]) |
|
inter_ymax = min(pred[3], gt[3]) |
|
inter_size = bbox_area([inter_xmin, inter_ymin, inter_xmax, inter_ymax], |
|
is_bbox_normalized) |
|
pred_size = bbox_area(pred, is_bbox_normalized) |
|
gt_size = bbox_area(gt, is_bbox_normalized) |
|
overlap = float(inter_size) / (pred_size + gt_size - inter_size) |
|
return overlap |
|
|
|
|
|
def calc_rbox_iou(pred, gt_poly): |
|
""" |
|
calc iou between rotated bbox |
|
""" |
|
# calc iou of bounding box for speedup |
|
pred = np.array(pred, np.float32).reshape(-1, 2) |
|
gt_poly = np.array(gt_poly, np.float32).reshape(-1, 2) |
|
pred_rect = [ |
|
np.min(pred[:, 0]), np.min(pred[:, 1]), np.max(pred[:, 0]), |
|
np.max(pred[:, 1]) |
|
] |
|
gt_rect = [ |
|
np.min(gt_poly[:, 0]), np.min(gt_poly[:, 1]), np.max(gt_poly[:, 0]), |
|
np.max(gt_poly[:, 1]) |
|
] |
|
iou = jaccard_overlap(pred_rect, gt_rect, False) |
|
|
|
if iou <= 0: |
|
return iou |
|
|
|
# calc rbox iou |
|
pred_rbox = poly2rbox_np(pred.reshape(-1, 8)).reshape(-1, 5) |
|
gt_rbox = poly2rbox_np(gt_poly.reshape(-1, 8)).reshape(-1, 5) |
|
try: |
|
from ext_op import rbox_iou |
|
except Exception as e: |
|
print("import custom_ops error, try install ext_op " \ |
|
"following ppdet/ext_op/README.md", e) |
|
sys.stdout.flush() |
|
sys.exit(-1) |
|
pd_gt_rbox = paddle.to_tensor(gt_rbox, dtype='float32') |
|
pd_pred_rbox = paddle.to_tensor(pred_rbox, dtype='float32') |
|
iou = rbox_iou(pd_gt_rbox, pd_pred_rbox) |
|
iou = iou.numpy() |
|
return iou[0][0] |
|
|
|
|
|
def prune_zero_padding(gt_box, gt_label, difficult=None): |
|
valid_cnt = 0 |
|
for i in range(len(gt_box)): |
|
if (gt_box[i] == 0).all(): |
|
break |
|
valid_cnt += 1 |
|
return (gt_box[:valid_cnt], gt_label[:valid_cnt], difficult[:valid_cnt] |
|
if difficult is not None else None) |
|
|
|
|
|
class DetectionMAP(object): |
|
""" |
|
Calculate detection mean average precision. |
|
Currently support two types: 11point and integral |
|
|
|
Args: |
|
class_num (int): The class number. |
|
overlap_thresh (float): The threshold of overlap |
|
ratio between prediction bounding box and |
|
ground truth bounding box for deciding |
|
true/false positive. Default 0.5. |
|
map_type (str): Calculation method of mean average |
|
precision, currently support '11point' and |
|
'integral'. Default '11point'. |
|
is_bbox_normalized (bool): Whether bounding boxes |
|
is normalized to range[0, 1]. Default False. |
|
evaluate_difficult (bool): Whether to evaluate |
|
difficult bounding boxes. Default False. |
|
catid2name (dict): Mapping between category id and category name. |
|
classwise (bool): Whether per-category AP and draw |
|
P-R Curve or not. |
|
""" |
|
|
|
def __init__(self, |
|
class_num, |
|
overlap_thresh=0.5, |
|
map_type='11point', |
|
is_bbox_normalized=False, |
|
evaluate_difficult=False, |
|
catid2name=None, |
|
classwise=False): |
|
self.class_num = class_num |
|
self.overlap_thresh = overlap_thresh |
|
assert map_type in ['11point', 'integral'], \ |
|
"map_type currently only support '11point' "\ |
|
"and 'integral'" |
|
self.map_type = map_type |
|
self.is_bbox_normalized = is_bbox_normalized |
|
self.evaluate_difficult = evaluate_difficult |
|
self.classwise = classwise |
|
self.classes = [] |
|
for cname in catid2name.values(): |
|
self.classes.append(cname) |
|
self.reset() |
|
|
|
def update(self, bbox, score, label, gt_box, gt_label, difficult=None): |
|
""" |
|
Update metric statics from given prediction and ground |
|
truth infomations. |
|
""" |
|
if difficult is None: |
|
difficult = np.zeros_like(gt_label) |
|
|
|
# record class gt count |
|
for gtl, diff in zip(gt_label, difficult): |
|
if self.evaluate_difficult or int(diff) == 0: |
|
self.class_gt_counts[int(np.array(gtl))] += 1 |
|
|
|
# record class score positive |
|
visited = [False] * len(gt_label) |
|
for b, s, l in zip(bbox, score, label): |
|
pred = b.tolist() if isinstance(b, np.ndarray) else b |
|
max_idx = -1 |
|
max_overlap = -1.0 |
|
for i, gl in enumerate(gt_label): |
|
if int(gl) == int(l): |
|
if len(gt_box[i]) == 8: |
|
overlap = calc_rbox_iou(pred, gt_box[i]) |
|
else: |
|
overlap = jaccard_overlap(pred, gt_box[i], |
|
self.is_bbox_normalized) |
|
if overlap > max_overlap: |
|
max_overlap = overlap |
|
max_idx = i |
|
|
|
if max_overlap > self.overlap_thresh: |
|
if self.evaluate_difficult or \ |
|
int(np.array(difficult[max_idx])) == 0: |
|
if not visited[max_idx]: |
|
self.class_score_poss[int(l)].append([s, 1.0]) |
|
visited[max_idx] = True |
|
else: |
|
self.class_score_poss[int(l)].append([s, 0.0]) |
|
else: |
|
self.class_score_poss[int(l)].append([s, 0.0]) |
|
|
|
def reset(self): |
|
""" |
|
Reset metric statics |
|
""" |
|
self.class_score_poss = [[] for _ in range(self.class_num)] |
|
self.class_gt_counts = [0] * self.class_num |
|
self.mAP = 0.0 |
|
|
|
def accumulate(self): |
|
""" |
|
Accumulate metric results and calculate mAP |
|
""" |
|
mAP = 0. |
|
valid_cnt = 0 |
|
eval_results = [] |
|
for score_pos, count in zip(self.class_score_poss, |
|
self.class_gt_counts): |
|
if count == 0: continue |
|
if len(score_pos) == 0: |
|
valid_cnt += 1 |
|
continue |
|
|
|
accum_tp_list, accum_fp_list = \ |
|
self._get_tp_fp_accum(score_pos) |
|
precision = [] |
|
recall = [] |
|
for ac_tp, ac_fp in zip(accum_tp_list, accum_fp_list): |
|
precision.append(float(ac_tp) / (ac_tp + ac_fp)) |
|
recall.append(float(ac_tp) / count) |
|
|
|
one_class_ap = 0.0 |
|
if self.map_type == '11point': |
|
max_precisions = [0.] * 11 |
|
start_idx = len(precision) - 1 |
|
for j in range(10, -1, -1): |
|
for i in range(start_idx, -1, -1): |
|
if recall[i] < float(j) / 10.: |
|
start_idx = i |
|
if j > 0: |
|
max_precisions[j - 1] = max_precisions[j] |
|
break |
|
else: |
|
if max_precisions[j] < precision[i]: |
|
max_precisions[j] = precision[i] |
|
one_class_ap = sum(max_precisions) / 11. |
|
mAP += one_class_ap |
|
valid_cnt += 1 |
|
elif self.map_type == 'integral': |
|
import math |
|
prev_recall = 0. |
|
for i in range(len(precision)): |
|
recall_gap = math.fabs(recall[i] - prev_recall) |
|
if recall_gap > 1e-6: |
|
one_class_ap += precision[i] * recall_gap |
|
prev_recall = recall[i] |
|
mAP += one_class_ap |
|
valid_cnt += 1 |
|
else: |
|
logger.error("Unspported mAP type {}".format(self.map_type)) |
|
sys.exit(1) |
|
eval_results.append({ |
|
'class': self.classes[valid_cnt - 1], |
|
'ap': one_class_ap, |
|
'precision': precision, |
|
'recall': recall, |
|
}) |
|
self.eval_results = eval_results |
|
self.mAP = mAP / float(valid_cnt) if valid_cnt > 0 else mAP |
|
|
|
def get_map(self): |
|
""" |
|
Get mAP result |
|
""" |
|
if self.mAP is None: |
|
logger.error("mAP is not calculated.") |
|
if self.classwise: |
|
# Compute per-category AP and PR curve |
|
try: |
|
from terminaltables import AsciiTable |
|
except Exception as e: |
|
logger.error( |
|
'terminaltables not found, plaese install terminaltables. ' |
|
'for example: `pip install terminaltables`.') |
|
raise e |
|
results_per_category = [] |
|
for eval_result in self.eval_results: |
|
results_per_category.append( |
|
(str(eval_result['class']), |
|
'{:0.3f}'.format(float(eval_result['ap'])))) |
|
draw_pr_curve( |
|
eval_result['precision'], |
|
eval_result['recall'], |
|
out_dir='voc_pr_curve', |
|
file_name='{}_precision_recall_curve.jpg'.format( |
|
eval_result['class'])) |
|
|
|
num_columns = min(6, len(results_per_category) * 2) |
|
results_flatten = list(itertools.chain(*results_per_category)) |
|
headers = ['category', 'AP'] * (num_columns // 2) |
|
results_2d = itertools.zip_longest( |
|
*[results_flatten[i::num_columns] for i in range(num_columns)]) |
|
table_data = [headers] |
|
table_data += [result for result in results_2d] |
|
table = AsciiTable(table_data) |
|
logger.info('Per-category of VOC AP: \n{}'.format(table.table)) |
|
logger.info( |
|
"per-category PR curve has output to voc_pr_curve folder.") |
|
return self.mAP |
|
|
|
def _get_tp_fp_accum(self, score_pos_list): |
|
""" |
|
Calculate accumulating true/false positive results from |
|
[score, pos] records |
|
""" |
|
sorted_list = sorted(score_pos_list, key=lambda s: s[0], reverse=True) |
|
accum_tp = 0 |
|
accum_fp = 0 |
|
accum_tp_list = [] |
|
accum_fp_list = [] |
|
for (score, pos) in sorted_list: |
|
accum_tp += int(pos) |
|
accum_tp_list.append(accum_tp) |
|
accum_fp += 1 - int(pos) |
|
accum_fp_list.append(accum_fp) |
|
return accum_tp_list, accum_fp_list |
|
|
|
|
|
def ap_per_class(tp, conf, pred_cls, target_cls): |
|
""" |
|
Computes the average precision, given the recall and precision curves. |
|
Method originally from https://github.com/rafaelpadilla/Object-Detection-Metrics. |
|
|
|
Args: |
|
tp (list): True positives. |
|
conf (list): Objectness value from 0-1. |
|
pred_cls (list): Predicted object classes. |
|
target_cls (list): Target object classes. |
|
""" |
|
tp, conf, pred_cls, target_cls = np.array(tp), np.array(conf), np.array( |
|
pred_cls), np.array(target_cls) |
|
|
|
# Sort by objectness |
|
i = np.argsort(-conf) |
|
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] |
|
|
|
# Find unique classes |
|
unique_classes = np.unique(np.concatenate((pred_cls, target_cls), 0)) |
|
|
|
# Create Precision-Recall curve and compute AP for each class |
|
ap, p, r = [], [], [] |
|
for c in unique_classes: |
|
i = pred_cls == c |
|
n_gt = sum(target_cls == c) # Number of ground truth objects |
|
n_p = sum(i) # Number of predicted objects |
|
|
|
if (n_p == 0) and (n_gt == 0): |
|
continue |
|
elif (n_p == 0) or (n_gt == 0): |
|
ap.append(0) |
|
r.append(0) |
|
p.append(0) |
|
else: |
|
# Accumulate FPs and TPs |
|
fpc = np.cumsum(1 - tp[i]) |
|
tpc = np.cumsum(tp[i]) |
|
|
|
# Recall |
|
recall_curve = tpc / (n_gt + 1e-16) |
|
r.append(tpc[-1] / (n_gt + 1e-16)) |
|
|
|
# Precision |
|
precision_curve = tpc / (tpc + fpc) |
|
p.append(tpc[-1] / (tpc[-1] + fpc[-1])) |
|
|
|
# AP from recall-precision curve |
|
ap.append(compute_ap(recall_curve, precision_curve)) |
|
|
|
return np.array(ap), unique_classes.astype('int32'), np.array(r), np.array( |
|
p) |
|
|
|
|
|
def compute_ap(recall, precision): |
|
""" |
|
Computes the average precision, given the recall and precision curves. |
|
Code originally from https://github.com/rbgirshick/py-faster-rcnn. |
|
|
|
Args: |
|
recall (list): The recall curve. |
|
precision (list): The precision curve. |
|
|
|
Returns: |
|
The average precision as computed in py-faster-rcnn. |
|
""" |
|
# correct AP calculation |
|
# first append sentinel values at the end |
|
mrec = np.concatenate(([0.], recall, [1.])) |
|
mpre = np.concatenate(([0.], precision, [0.])) |
|
|
|
# compute the precision envelope |
|
for i in range(mpre.size - 1, 0, -1): |
|
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) |
|
|
|
# to calculate area under PR curve, look for points |
|
# where X axis (recall) changes value |
|
i = np.where(mrec[1:] != mrec[:-1])[0] |
|
|
|
# and sum (\Delta recall) * prec |
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) |
|
return ap
|
|
|