You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
410 lines
15 KiB
410 lines
15 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os |
|
import json |
|
from collections import defaultdict, OrderedDict |
|
import numpy as np |
|
import paddle |
|
from pycocotools.coco import COCO |
|
from pycocotools.cocoeval import COCOeval |
|
from ..modeling.keypoint_utils import oks_nms |
|
from scipy.io import loadmat, savemat |
|
from paddlers.models.ppdet.utils.logger import setup_logger |
|
logger = setup_logger(__name__) |
|
|
|
__all__ = ['KeyPointTopDownCOCOEval', 'KeyPointTopDownMPIIEval'] |
|
|
|
|
|
class KeyPointTopDownCOCOEval(object): |
|
"""refer to |
|
https://github.com/leoxiaobin/deep-high-resolution-net.pytorch |
|
Copyright (c) Microsoft, under the MIT License. |
|
""" |
|
|
|
def __init__(self, |
|
anno_file, |
|
num_samples, |
|
num_joints, |
|
output_eval, |
|
iou_type='keypoints', |
|
in_vis_thre=0.2, |
|
oks_thre=0.9, |
|
save_prediction_only=False): |
|
super(KeyPointTopDownCOCOEval, self).__init__() |
|
self.coco = COCO(anno_file) |
|
self.num_samples = num_samples |
|
self.num_joints = num_joints |
|
self.iou_type = iou_type |
|
self.in_vis_thre = in_vis_thre |
|
self.oks_thre = oks_thre |
|
self.output_eval = output_eval |
|
self.res_file = os.path.join(output_eval, "keypoints_results.json") |
|
self.save_prediction_only = save_prediction_only |
|
self.reset() |
|
|
|
def reset(self): |
|
self.results = { |
|
'all_preds': np.zeros( |
|
(self.num_samples, self.num_joints, 3), dtype=np.float32), |
|
'all_boxes': np.zeros((self.num_samples, 6)), |
|
'image_path': [] |
|
} |
|
self.eval_results = {} |
|
self.idx = 0 |
|
|
|
def update(self, inputs, outputs): |
|
kpts, _ = outputs['keypoint'][0] |
|
|
|
num_images = inputs['image'].shape[0] |
|
self.results['all_preds'][self.idx:self.idx + num_images, :, 0: |
|
3] = kpts[:, :, 0:3] |
|
self.results['all_boxes'][self.idx:self.idx + num_images, 0:2] = inputs[ |
|
'center'].numpy()[:, 0:2] if isinstance( |
|
inputs['center'], paddle.Tensor) else inputs['center'][:, 0:2] |
|
self.results['all_boxes'][self.idx:self.idx + num_images, 2:4] = inputs[ |
|
'scale'].numpy()[:, 0:2] if isinstance( |
|
inputs['scale'], paddle.Tensor) else inputs['scale'][:, 0:2] |
|
self.results['all_boxes'][self.idx:self.idx + num_images, 4] = np.prod( |
|
inputs['scale'].numpy() * 200, |
|
1) if isinstance(inputs['scale'], paddle.Tensor) else np.prod( |
|
inputs['scale'] * 200, 1) |
|
self.results['all_boxes'][ |
|
self.idx:self.idx + num_images, |
|
5] = np.squeeze(inputs['score'].numpy()) if isinstance( |
|
inputs['score'], paddle.Tensor) else np.squeeze(inputs['score']) |
|
if isinstance(inputs['im_id'], paddle.Tensor): |
|
self.results['image_path'].extend(inputs['im_id'].numpy()) |
|
else: |
|
self.results['image_path'].extend(inputs['im_id']) |
|
self.idx += num_images |
|
|
|
def _write_coco_keypoint_results(self, keypoints): |
|
data_pack = [{ |
|
'cat_id': 1, |
|
'cls': 'person', |
|
'ann_type': 'keypoints', |
|
'keypoints': keypoints |
|
}] |
|
results = self._coco_keypoint_results_one_category_kernel(data_pack[0]) |
|
if not os.path.exists(self.output_eval): |
|
os.makedirs(self.output_eval) |
|
with open(self.res_file, 'w') as f: |
|
json.dump(results, f, sort_keys=True, indent=4) |
|
logger.info(f'The keypoint result is saved to {self.res_file}.') |
|
try: |
|
json.load(open(self.res_file)) |
|
except Exception: |
|
content = [] |
|
with open(self.res_file, 'r') as f: |
|
for line in f: |
|
content.append(line) |
|
content[-1] = ']' |
|
with open(self.res_file, 'w') as f: |
|
for c in content: |
|
f.write(c) |
|
|
|
def _coco_keypoint_results_one_category_kernel(self, data_pack): |
|
cat_id = data_pack['cat_id'] |
|
keypoints = data_pack['keypoints'] |
|
cat_results = [] |
|
|
|
for img_kpts in keypoints: |
|
if len(img_kpts) == 0: |
|
continue |
|
|
|
_key_points = np.array( |
|
[img_kpts[k]['keypoints'] for k in range(len(img_kpts))]) |
|
_key_points = _key_points.reshape(_key_points.shape[0], -1) |
|
|
|
result = [{ |
|
'image_id': img_kpts[k]['image'], |
|
'category_id': cat_id, |
|
'keypoints': _key_points[k].tolist(), |
|
'score': img_kpts[k]['score'], |
|
'center': list(img_kpts[k]['center']), |
|
'scale': list(img_kpts[k]['scale']) |
|
} for k in range(len(img_kpts))] |
|
cat_results.extend(result) |
|
|
|
return cat_results |
|
|
|
def get_final_results(self, preds, all_boxes, img_path): |
|
_kpts = [] |
|
for idx, kpt in enumerate(preds): |
|
_kpts.append({ |
|
'keypoints': kpt, |
|
'center': all_boxes[idx][0:2], |
|
'scale': all_boxes[idx][2:4], |
|
'area': all_boxes[idx][4], |
|
'score': all_boxes[idx][5], |
|
'image': int(img_path[idx]) |
|
}) |
|
# image x person x (keypoints) |
|
kpts = defaultdict(list) |
|
for kpt in _kpts: |
|
kpts[kpt['image']].append(kpt) |
|
|
|
# rescoring and oks nms |
|
num_joints = preds.shape[1] |
|
in_vis_thre = self.in_vis_thre |
|
oks_thre = self.oks_thre |
|
oks_nmsed_kpts = [] |
|
for img in kpts.keys(): |
|
img_kpts = kpts[img] |
|
for n_p in img_kpts: |
|
box_score = n_p['score'] |
|
kpt_score = 0 |
|
valid_num = 0 |
|
for n_jt in range(0, num_joints): |
|
t_s = n_p['keypoints'][n_jt][2] |
|
if t_s > in_vis_thre: |
|
kpt_score = kpt_score + t_s |
|
valid_num = valid_num + 1 |
|
if valid_num != 0: |
|
kpt_score = kpt_score / valid_num |
|
# rescoring |
|
n_p['score'] = kpt_score * box_score |
|
|
|
keep = oks_nms([img_kpts[i] for i in range(len(img_kpts))], |
|
oks_thre) |
|
|
|
if len(keep) == 0: |
|
oks_nmsed_kpts.append(img_kpts) |
|
else: |
|
oks_nmsed_kpts.append([img_kpts[_keep] for _keep in keep]) |
|
|
|
self._write_coco_keypoint_results(oks_nmsed_kpts) |
|
|
|
def accumulate(self): |
|
self.get_final_results(self.results['all_preds'], |
|
self.results['all_boxes'], |
|
self.results['image_path']) |
|
if self.save_prediction_only: |
|
logger.info(f'The keypoint result is saved to {self.res_file} ' |
|
'and do not evaluate the mAP.') |
|
return |
|
coco_dt = self.coco.loadRes(self.res_file) |
|
coco_eval = COCOeval(self.coco, coco_dt, 'keypoints') |
|
coco_eval.params.useSegm = None |
|
coco_eval.evaluate() |
|
coco_eval.accumulate() |
|
coco_eval.summarize() |
|
|
|
keypoint_stats = [] |
|
for ind in range(len(coco_eval.stats)): |
|
keypoint_stats.append((coco_eval.stats[ind])) |
|
self.eval_results['keypoint'] = keypoint_stats |
|
|
|
def log(self): |
|
if self.save_prediction_only: |
|
return |
|
stats_names = [ |
|
'AP', 'Ap .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5', |
|
'AR .75', 'AR (M)', 'AR (L)' |
|
] |
|
num_values = len(stats_names) |
|
print(' '.join(['| {}'.format(name) for name in stats_names]) + ' |') |
|
print('|---' * (num_values + 1) + '|') |
|
|
|
print(' '.join([ |
|
'| {:.3f}'.format(value) for value in self.eval_results['keypoint'] |
|
]) + ' |') |
|
|
|
def get_results(self): |
|
return self.eval_results |
|
|
|
|
|
class KeyPointTopDownMPIIEval(object): |
|
def __init__(self, |
|
anno_file, |
|
num_samples, |
|
num_joints, |
|
output_eval, |
|
oks_thre=0.9, |
|
save_prediction_only=False): |
|
super(KeyPointTopDownMPIIEval, self).__init__() |
|
self.ann_file = anno_file |
|
self.res_file = os.path.join(output_eval, "keypoints_results.json") |
|
self.save_prediction_only = save_prediction_only |
|
self.reset() |
|
|
|
def reset(self): |
|
self.results = [] |
|
self.eval_results = {} |
|
self.idx = 0 |
|
|
|
def update(self, inputs, outputs): |
|
kpts, _ = outputs['keypoint'][0] |
|
|
|
num_images = inputs['image'].shape[0] |
|
results = {} |
|
results['preds'] = kpts[:, :, 0:3] |
|
results['boxes'] = np.zeros((num_images, 6)) |
|
results['boxes'][:, 0:2] = inputs['center'].numpy()[:, 0:2] |
|
results['boxes'][:, 2:4] = inputs['scale'].numpy()[:, 0:2] |
|
results['boxes'][:, 4] = np.prod(inputs['scale'].numpy() * 200, 1) |
|
results['boxes'][:, 5] = np.squeeze(inputs['score'].numpy()) |
|
results['image_path'] = inputs['image_file'] |
|
|
|
self.results.append(results) |
|
|
|
def accumulate(self): |
|
self._mpii_keypoint_results_save() |
|
if self.save_prediction_only: |
|
logger.info(f'The keypoint result is saved to {self.res_file} ' |
|
'and do not evaluate the mAP.') |
|
return |
|
|
|
self.eval_results = self.evaluate(self.results) |
|
|
|
def _mpii_keypoint_results_save(self): |
|
results = [] |
|
for res in self.results: |
|
if len(res) == 0: |
|
continue |
|
result = [{ |
|
'preds': res['preds'][k].tolist(), |
|
'boxes': res['boxes'][k].tolist(), |
|
'image_path': res['image_path'][k], |
|
} for k in range(len(res))] |
|
results.extend(result) |
|
with open(self.res_file, 'w') as f: |
|
json.dump(results, f, sort_keys=True, indent=4) |
|
logger.info(f'The keypoint result is saved to {self.res_file}.') |
|
|
|
def log(self): |
|
if self.save_prediction_only: |
|
return |
|
for item, value in self.eval_results.items(): |
|
print("{} : {}".format(item, value)) |
|
|
|
def get_results(self): |
|
return self.eval_results |
|
|
|
def evaluate(self, outputs, savepath=None): |
|
"""Evaluate PCKh for MPII dataset. refer to |
|
https://github.com/leoxiaobin/deep-high-resolution-net.pytorch |
|
Copyright (c) Microsoft, under the MIT License. |
|
|
|
Args: |
|
outputs(list(preds, boxes)): |
|
|
|
* preds (np.ndarray[N,K,3]): The first two dimensions are |
|
coordinates, score is the third dimension of the array. |
|
* boxes (np.ndarray[N,6]): [center[0], center[1], scale[0] |
|
, scale[1],area, score] |
|
|
|
Returns: |
|
dict: PCKh for each joint |
|
""" |
|
|
|
kpts = [] |
|
for output in outputs: |
|
preds = output['preds'] |
|
batch_size = preds.shape[0] |
|
for i in range(batch_size): |
|
kpts.append({'keypoints': preds[i]}) |
|
|
|
preds = np.stack([kpt['keypoints'] for kpt in kpts]) |
|
|
|
# convert 0-based index to 1-based index, |
|
# and get the first two dimensions. |
|
preds = preds[..., :2] + 1.0 |
|
|
|
if savepath is not None: |
|
pred_file = os.path.join(savepath, 'pred.mat') |
|
savemat(pred_file, mdict={'preds': preds}) |
|
|
|
SC_BIAS = 0.6 |
|
threshold = 0.5 |
|
|
|
gt_file = os.path.join( |
|
os.path.dirname(self.ann_file), 'mpii_gt_val.mat') |
|
gt_dict = loadmat(gt_file) |
|
dataset_joints = gt_dict['dataset_joints'] |
|
jnt_missing = gt_dict['jnt_missing'] |
|
pos_gt_src = gt_dict['pos_gt_src'] |
|
headboxes_src = gt_dict['headboxes_src'] |
|
|
|
pos_pred_src = np.transpose(preds, [1, 2, 0]) |
|
|
|
head = np.where(dataset_joints == 'head')[1][0] |
|
lsho = np.where(dataset_joints == 'lsho')[1][0] |
|
lelb = np.where(dataset_joints == 'lelb')[1][0] |
|
lwri = np.where(dataset_joints == 'lwri')[1][0] |
|
lhip = np.where(dataset_joints == 'lhip')[1][0] |
|
lkne = np.where(dataset_joints == 'lkne')[1][0] |
|
lank = np.where(dataset_joints == 'lank')[1][0] |
|
|
|
rsho = np.where(dataset_joints == 'rsho')[1][0] |
|
relb = np.where(dataset_joints == 'relb')[1][0] |
|
rwri = np.where(dataset_joints == 'rwri')[1][0] |
|
rkne = np.where(dataset_joints == 'rkne')[1][0] |
|
rank = np.where(dataset_joints == 'rank')[1][0] |
|
rhip = np.where(dataset_joints == 'rhip')[1][0] |
|
|
|
jnt_visible = 1 - jnt_missing |
|
uv_error = pos_pred_src - pos_gt_src |
|
uv_err = np.linalg.norm(uv_error, axis=1) |
|
headsizes = headboxes_src[1, :, :] - headboxes_src[0, :, :] |
|
headsizes = np.linalg.norm(headsizes, axis=0) |
|
headsizes *= SC_BIAS |
|
scale = headsizes * np.ones((len(uv_err), 1), dtype=np.float32) |
|
scaled_uv_err = uv_err / scale |
|
scaled_uv_err = scaled_uv_err * jnt_visible |
|
jnt_count = np.sum(jnt_visible, axis=1) |
|
less_than_threshold = (scaled_uv_err <= threshold) * jnt_visible |
|
PCKh = 100. * np.sum(less_than_threshold, axis=1) / jnt_count |
|
|
|
# save |
|
rng = np.arange(0, 0.5 + 0.01, 0.01) |
|
pckAll = np.zeros((len(rng), 16), dtype=np.float32) |
|
|
|
for r, threshold in enumerate(rng): |
|
less_than_threshold = (scaled_uv_err <= threshold) * jnt_visible |
|
pckAll[r, :] = 100. * np.sum(less_than_threshold, |
|
axis=1) / jnt_count |
|
|
|
PCKh = np.ma.array(PCKh, mask=False) |
|
PCKh.mask[6:8] = True |
|
|
|
jnt_count = np.ma.array(jnt_count, mask=False) |
|
jnt_count.mask[6:8] = True |
|
jnt_ratio = jnt_count / np.sum(jnt_count).astype(np.float64) |
|
|
|
name_value = [ #noqa |
|
('Head', PCKh[head]), |
|
('Shoulder', 0.5 * (PCKh[lsho] + PCKh[rsho])), |
|
('Elbow', 0.5 * (PCKh[lelb] + PCKh[relb])), |
|
('Wrist', 0.5 * (PCKh[lwri] + PCKh[rwri])), |
|
('Hip', 0.5 * (PCKh[lhip] + PCKh[rhip])), |
|
('Knee', 0.5 * (PCKh[lkne] + PCKh[rkne])), |
|
('Ankle', 0.5 * (PCKh[lank] + PCKh[rank])), |
|
('PCKh', np.sum(PCKh * jnt_ratio)), |
|
('PCKh@0.1', np.sum(pckAll[11, :] * jnt_ratio)) |
|
] |
|
name_value = OrderedDict(name_value) |
|
|
|
return name_value |
|
|
|
def _sort_and_unique_bboxes(self, kpts, key='bbox_id'): |
|
"""sort kpts and remove the repeated ones.""" |
|
kpts = sorted(kpts, key=lambda x: x[key]) |
|
num = len(kpts) |
|
for i in range(num - 1, 0, -1): |
|
if kpts[i][key] == kpts[i - 1][key]: |
|
del kpts[i] |
|
|
|
return kpts
|
|
|