You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

410 lines
15 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import json
from collections import defaultdict, OrderedDict
import numpy as np
import paddle
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from ..modeling.keypoint_utils import oks_nms
from scipy.io import loadmat, savemat
from paddlers.models.ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = ['KeyPointTopDownCOCOEval', 'KeyPointTopDownMPIIEval']
class KeyPointTopDownCOCOEval(object):
"""refer to
https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
Copyright (c) Microsoft, under the MIT License.
"""
def __init__(self,
anno_file,
num_samples,
num_joints,
output_eval,
iou_type='keypoints',
in_vis_thre=0.2,
oks_thre=0.9,
save_prediction_only=False):
super(KeyPointTopDownCOCOEval, self).__init__()
self.coco = COCO(anno_file)
self.num_samples = num_samples
self.num_joints = num_joints
self.iou_type = iou_type
self.in_vis_thre = in_vis_thre
self.oks_thre = oks_thre
self.output_eval = output_eval
self.res_file = os.path.join(output_eval, "keypoints_results.json")
self.save_prediction_only = save_prediction_only
self.reset()
def reset(self):
self.results = {
'all_preds': np.zeros(
(self.num_samples, self.num_joints, 3), dtype=np.float32),
'all_boxes': np.zeros((self.num_samples, 6)),
'image_path': []
}
self.eval_results = {}
self.idx = 0
def update(self, inputs, outputs):
kpts, _ = outputs['keypoint'][0]
num_images = inputs['image'].shape[0]
self.results['all_preds'][self.idx:self.idx + num_images, :, 0:
3] = kpts[:, :, 0:3]
self.results['all_boxes'][self.idx:self.idx + num_images, 0:2] = inputs[
'center'].numpy()[:, 0:2] if isinstance(
inputs['center'], paddle.Tensor) else inputs['center'][:, 0:2]
self.results['all_boxes'][self.idx:self.idx + num_images, 2:4] = inputs[
'scale'].numpy()[:, 0:2] if isinstance(
inputs['scale'], paddle.Tensor) else inputs['scale'][:, 0:2]
self.results['all_boxes'][self.idx:self.idx + num_images, 4] = np.prod(
inputs['scale'].numpy() * 200,
1) if isinstance(inputs['scale'], paddle.Tensor) else np.prod(
inputs['scale'] * 200, 1)
self.results['all_boxes'][
self.idx:self.idx + num_images,
5] = np.squeeze(inputs['score'].numpy()) if isinstance(
inputs['score'], paddle.Tensor) else np.squeeze(inputs['score'])
if isinstance(inputs['im_id'], paddle.Tensor):
self.results['image_path'].extend(inputs['im_id'].numpy())
else:
self.results['image_path'].extend(inputs['im_id'])
self.idx += num_images
def _write_coco_keypoint_results(self, keypoints):
data_pack = [{
'cat_id': 1,
'cls': 'person',
'ann_type': 'keypoints',
'keypoints': keypoints
}]
results = self._coco_keypoint_results_one_category_kernel(data_pack[0])
if not os.path.exists(self.output_eval):
os.makedirs(self.output_eval)
with open(self.res_file, 'w') as f:
json.dump(results, f, sort_keys=True, indent=4)
logger.info(f'The keypoint result is saved to {self.res_file}.')
try:
json.load(open(self.res_file))
except Exception:
content = []
with open(self.res_file, 'r') as f:
for line in f:
content.append(line)
content[-1] = ']'
with open(self.res_file, 'w') as f:
for c in content:
f.write(c)
def _coco_keypoint_results_one_category_kernel(self, data_pack):
cat_id = data_pack['cat_id']
keypoints = data_pack['keypoints']
cat_results = []
for img_kpts in keypoints:
if len(img_kpts) == 0:
continue
_key_points = np.array(
[img_kpts[k]['keypoints'] for k in range(len(img_kpts))])
_key_points = _key_points.reshape(_key_points.shape[0], -1)
result = [{
'image_id': img_kpts[k]['image'],
'category_id': cat_id,
'keypoints': _key_points[k].tolist(),
'score': img_kpts[k]['score'],
'center': list(img_kpts[k]['center']),
'scale': list(img_kpts[k]['scale'])
} for k in range(len(img_kpts))]
cat_results.extend(result)
return cat_results
def get_final_results(self, preds, all_boxes, img_path):
_kpts = []
for idx, kpt in enumerate(preds):
_kpts.append({
'keypoints': kpt,
'center': all_boxes[idx][0:2],
'scale': all_boxes[idx][2:4],
'area': all_boxes[idx][4],
'score': all_boxes[idx][5],
'image': int(img_path[idx])
})
# image x person x (keypoints)
kpts = defaultdict(list)
for kpt in _kpts:
kpts[kpt['image']].append(kpt)
# rescoring and oks nms
num_joints = preds.shape[1]
in_vis_thre = self.in_vis_thre
oks_thre = self.oks_thre
oks_nmsed_kpts = []
for img in kpts.keys():
img_kpts = kpts[img]
for n_p in img_kpts:
box_score = n_p['score']
kpt_score = 0
valid_num = 0
for n_jt in range(0, num_joints):
t_s = n_p['keypoints'][n_jt][2]
if t_s > in_vis_thre:
kpt_score = kpt_score + t_s
valid_num = valid_num + 1
if valid_num != 0:
kpt_score = kpt_score / valid_num
# rescoring
n_p['score'] = kpt_score * box_score
keep = oks_nms([img_kpts[i] for i in range(len(img_kpts))],
oks_thre)
if len(keep) == 0:
oks_nmsed_kpts.append(img_kpts)
else:
oks_nmsed_kpts.append([img_kpts[_keep] for _keep in keep])
self._write_coco_keypoint_results(oks_nmsed_kpts)
def accumulate(self):
self.get_final_results(self.results['all_preds'],
self.results['all_boxes'],
self.results['image_path'])
if self.save_prediction_only:
logger.info(f'The keypoint result is saved to {self.res_file} '
'and do not evaluate the mAP.')
return
coco_dt = self.coco.loadRes(self.res_file)
coco_eval = COCOeval(self.coco, coco_dt, 'keypoints')
coco_eval.params.useSegm = None
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
keypoint_stats = []
for ind in range(len(coco_eval.stats)):
keypoint_stats.append((coco_eval.stats[ind]))
self.eval_results['keypoint'] = keypoint_stats
def log(self):
if self.save_prediction_only:
return
stats_names = [
'AP', 'Ap .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5',
'AR .75', 'AR (M)', 'AR (L)'
]
num_values = len(stats_names)
print(' '.join(['| {}'.format(name) for name in stats_names]) + ' |')
print('|---' * (num_values + 1) + '|')
print(' '.join([
'| {:.3f}'.format(value) for value in self.eval_results['keypoint']
]) + ' |')
def get_results(self):
return self.eval_results
class KeyPointTopDownMPIIEval(object):
def __init__(self,
anno_file,
num_samples,
num_joints,
output_eval,
oks_thre=0.9,
save_prediction_only=False):
super(KeyPointTopDownMPIIEval, self).__init__()
self.ann_file = anno_file
self.res_file = os.path.join(output_eval, "keypoints_results.json")
self.save_prediction_only = save_prediction_only
self.reset()
def reset(self):
self.results = []
self.eval_results = {}
self.idx = 0
def update(self, inputs, outputs):
kpts, _ = outputs['keypoint'][0]
num_images = inputs['image'].shape[0]
results = {}
results['preds'] = kpts[:, :, 0:3]
results['boxes'] = np.zeros((num_images, 6))
results['boxes'][:, 0:2] = inputs['center'].numpy()[:, 0:2]
results['boxes'][:, 2:4] = inputs['scale'].numpy()[:, 0:2]
results['boxes'][:, 4] = np.prod(inputs['scale'].numpy() * 200, 1)
results['boxes'][:, 5] = np.squeeze(inputs['score'].numpy())
results['image_path'] = inputs['image_file']
self.results.append(results)
def accumulate(self):
self._mpii_keypoint_results_save()
if self.save_prediction_only:
logger.info(f'The keypoint result is saved to {self.res_file} '
'and do not evaluate the mAP.')
return
self.eval_results = self.evaluate(self.results)
def _mpii_keypoint_results_save(self):
results = []
for res in self.results:
if len(res) == 0:
continue
result = [{
'preds': res['preds'][k].tolist(),
'boxes': res['boxes'][k].tolist(),
'image_path': res['image_path'][k],
} for k in range(len(res))]
results.extend(result)
with open(self.res_file, 'w') as f:
json.dump(results, f, sort_keys=True, indent=4)
logger.info(f'The keypoint result is saved to {self.res_file}.')
def log(self):
if self.save_prediction_only:
return
for item, value in self.eval_results.items():
print("{} : {}".format(item, value))
def get_results(self):
return self.eval_results
def evaluate(self, outputs, savepath=None):
"""Evaluate PCKh for MPII dataset. refer to
https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
Copyright (c) Microsoft, under the MIT License.
Args:
outputs(list(preds, boxes)):
* preds (np.ndarray[N,K,3]): The first two dimensions are
coordinates, score is the third dimension of the array.
* boxes (np.ndarray[N,6]): [center[0], center[1], scale[0]
, scale[1],area, score]
Returns:
dict: PCKh for each joint
"""
kpts = []
for output in outputs:
preds = output['preds']
batch_size = preds.shape[0]
for i in range(batch_size):
kpts.append({'keypoints': preds[i]})
preds = np.stack([kpt['keypoints'] for kpt in kpts])
# convert 0-based index to 1-based index,
# and get the first two dimensions.
preds = preds[..., :2] + 1.0
if savepath is not None:
pred_file = os.path.join(savepath, 'pred.mat')
savemat(pred_file, mdict={'preds': preds})
SC_BIAS = 0.6
threshold = 0.5
gt_file = os.path.join(
os.path.dirname(self.ann_file), 'mpii_gt_val.mat')
gt_dict = loadmat(gt_file)
dataset_joints = gt_dict['dataset_joints']
jnt_missing = gt_dict['jnt_missing']
pos_gt_src = gt_dict['pos_gt_src']
headboxes_src = gt_dict['headboxes_src']
pos_pred_src = np.transpose(preds, [1, 2, 0])
head = np.where(dataset_joints == 'head')[1][0]
lsho = np.where(dataset_joints == 'lsho')[1][0]
lelb = np.where(dataset_joints == 'lelb')[1][0]
lwri = np.where(dataset_joints == 'lwri')[1][0]
lhip = np.where(dataset_joints == 'lhip')[1][0]
lkne = np.where(dataset_joints == 'lkne')[1][0]
lank = np.where(dataset_joints == 'lank')[1][0]
rsho = np.where(dataset_joints == 'rsho')[1][0]
relb = np.where(dataset_joints == 'relb')[1][0]
rwri = np.where(dataset_joints == 'rwri')[1][0]
rkne = np.where(dataset_joints == 'rkne')[1][0]
rank = np.where(dataset_joints == 'rank')[1][0]
rhip = np.where(dataset_joints == 'rhip')[1][0]
jnt_visible = 1 - jnt_missing
uv_error = pos_pred_src - pos_gt_src
uv_err = np.linalg.norm(uv_error, axis=1)
headsizes = headboxes_src[1, :, :] - headboxes_src[0, :, :]
headsizes = np.linalg.norm(headsizes, axis=0)
headsizes *= SC_BIAS
scale = headsizes * np.ones((len(uv_err), 1), dtype=np.float32)
scaled_uv_err = uv_err / scale
scaled_uv_err = scaled_uv_err * jnt_visible
jnt_count = np.sum(jnt_visible, axis=1)
less_than_threshold = (scaled_uv_err <= threshold) * jnt_visible
PCKh = 100. * np.sum(less_than_threshold, axis=1) / jnt_count
# save
rng = np.arange(0, 0.5 + 0.01, 0.01)
pckAll = np.zeros((len(rng), 16), dtype=np.float32)
for r, threshold in enumerate(rng):
less_than_threshold = (scaled_uv_err <= threshold) * jnt_visible
pckAll[r, :] = 100. * np.sum(less_than_threshold,
axis=1) / jnt_count
PCKh = np.ma.array(PCKh, mask=False)
PCKh.mask[6:8] = True
jnt_count = np.ma.array(jnt_count, mask=False)
jnt_count.mask[6:8] = True
jnt_ratio = jnt_count / np.sum(jnt_count).astype(np.float64)
name_value = [ #noqa
('Head', PCKh[head]),
('Shoulder', 0.5 * (PCKh[lsho] + PCKh[rsho])),
('Elbow', 0.5 * (PCKh[lelb] + PCKh[relb])),
('Wrist', 0.5 * (PCKh[lwri] + PCKh[rwri])),
('Hip', 0.5 * (PCKh[lhip] + PCKh[rhip])),
('Knee', 0.5 * (PCKh[lkne] + PCKh[rkne])),
('Ankle', 0.5 * (PCKh[lank] + PCKh[rank])),
('PCKh', np.sum(PCKh * jnt_ratio)),
('PCKh@0.1', np.sum(pckAll[11, :] * jnt_ratio))
]
name_value = OrderedDict(name_value)
return name_value
def _sort_and_unique_bboxes(self, kpts, key='bbox_id'):
"""sort kpts and remove the repeated ones."""
kpts = sorted(kpts, key=lambda x: x[key])
num = len(kpts)
for i in range(num - 1, 0, -1):
if kpts[i][key] == kpts[i - 1][key]:
del kpts[i]
return kpts