You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
184 lines
7.0 KiB
184 lines
7.0 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import os |
|
import sys |
|
import numpy as np |
|
import itertools |
|
|
|
from paddlers.models.ppdet.metrics.json_results import get_det_res, get_det_poly_res, get_seg_res, get_solov2_segm_res, get_keypoint_res |
|
from paddlers.models.ppdet.metrics.map_utils import draw_pr_curve |
|
|
|
from paddlers.models.ppdet.utils.logger import setup_logger |
|
logger = setup_logger(__name__) |
|
|
|
|
|
def get_infer_results(outs, catid, bias=0): |
|
""" |
|
Get result at the stage of inference. |
|
The output format is dictionary containing bbox or mask result. |
|
|
|
For example, bbox result is a list and each element contains |
|
image_id, category_id, bbox and score. |
|
""" |
|
if outs is None or len(outs) == 0: |
|
raise ValueError( |
|
'The number of valid detection result if zero. Please use reasonable model and check input data.' |
|
) |
|
|
|
im_id = outs['im_id'] |
|
|
|
infer_res = {} |
|
if 'bbox' in outs: |
|
if len(outs['bbox']) > 0 and len(outs['bbox'][0]) > 6: |
|
infer_res['bbox'] = get_det_poly_res( |
|
outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias) |
|
else: |
|
infer_res['bbox'] = get_det_res( |
|
outs['bbox'], outs['bbox_num'], im_id, catid, bias=bias) |
|
|
|
if 'mask' in outs: |
|
# mask post process |
|
infer_res['mask'] = get_seg_res(outs['mask'], outs['bbox'], |
|
outs['bbox_num'], im_id, catid) |
|
|
|
if 'segm' in outs: |
|
infer_res['segm'] = get_solov2_segm_res(outs, im_id, catid) |
|
|
|
if 'keypoint' in outs: |
|
infer_res['keypoint'] = get_keypoint_res(outs, im_id) |
|
outs['bbox_num'] = [len(infer_res['keypoint'])] |
|
|
|
return infer_res |
|
|
|
|
|
def cocoapi_eval(jsonfile, |
|
style, |
|
coco_gt=None, |
|
anno_file=None, |
|
max_dets=(100, 300, 1000), |
|
classwise=False, |
|
sigmas=None, |
|
use_area=True): |
|
""" |
|
Args: |
|
jsonfile (str): Evaluation json file, eg: bbox.json, mask.json. |
|
style (str): COCOeval style, can be `bbox` , `segm` , `proposal`, `keypoints` and `keypoints_crowd`. |
|
coco_gt (str): Whether to load COCOAPI through anno_file, |
|
eg: coco_gt = COCO(anno_file) |
|
anno_file (str): COCO annotations file. |
|
max_dets (tuple): COCO evaluation maxDets. |
|
classwise (bool): Whether per-category AP and draw P-R Curve or not. |
|
sigmas (nparray): keypoint labelling sigmas. |
|
use_area (bool): If gt annotations (eg. CrowdPose, AIC) |
|
do not have 'area', please set use_area=False. |
|
""" |
|
assert coco_gt != None or anno_file != None |
|
if style == 'keypoints_crowd': |
|
#please install xtcocotools==1.6 |
|
from xtcocotools.coco import COCO |
|
from xtcocotools.cocoeval import COCOeval |
|
else: |
|
from pycocotools.coco import COCO |
|
from pycocotools.cocoeval import COCOeval |
|
|
|
if coco_gt == None: |
|
coco_gt = COCO(anno_file) |
|
logger.info("Start evaluate...") |
|
coco_dt = coco_gt.loadRes(jsonfile) |
|
if style == 'proposal': |
|
coco_eval = COCOeval(coco_gt, coco_dt, 'bbox') |
|
coco_eval.params.useCats = 0 |
|
coco_eval.params.maxDets = list(max_dets) |
|
elif style == 'keypoints_crowd': |
|
coco_eval = COCOeval(coco_gt, coco_dt, style, sigmas, use_area) |
|
else: |
|
coco_eval = COCOeval(coco_gt, coco_dt, style) |
|
coco_eval.evaluate() |
|
coco_eval.accumulate() |
|
coco_eval.summarize() |
|
if classwise: |
|
# Compute per-category AP and PR curve |
|
try: |
|
from terminaltables import AsciiTable |
|
except Exception as e: |
|
logger.error( |
|
'terminaltables not found, plaese install terminaltables. ' |
|
'for example: `pip install terminaltables`.') |
|
raise e |
|
precisions = coco_eval.eval['precision'] |
|
cat_ids = coco_gt.getCatIds() |
|
# precision: (iou, recall, cls, area range, max dets) |
|
assert len(cat_ids) == precisions.shape[2] |
|
results_per_category = [] |
|
for idx, catId in enumerate(cat_ids): |
|
# area range index 0: all area ranges |
|
# max dets index -1: typically 100 per image |
|
nm = coco_gt.loadCats(catId)[0] |
|
precision = precisions[:, :, idx, 0, -1] |
|
precision = precision[precision > -1] |
|
if precision.size: |
|
ap = np.mean(precision) |
|
else: |
|
ap = float('nan') |
|
results_per_category.append( |
|
(str(nm["name"]), '{:0.3f}'.format(float(ap)))) |
|
pr_array = precisions[0, :, idx, 0, 2] |
|
recall_array = np.arange(0.0, 1.01, 0.01) |
|
draw_pr_curve( |
|
pr_array, |
|
recall_array, |
|
out_dir=style + '_pr_curve', |
|
file_name='{}_precision_recall_curve.jpg'.format(nm["name"])) |
|
|
|
num_columns = min(6, len(results_per_category) * 2) |
|
results_flatten = list(itertools.chain(*results_per_category)) |
|
headers = ['category', 'AP'] * (num_columns // 2) |
|
results_2d = itertools.zip_longest( |
|
*[results_flatten[i::num_columns] for i in range(num_columns)]) |
|
table_data = [headers] |
|
table_data += [result for result in results_2d] |
|
table = AsciiTable(table_data) |
|
logger.info('Per-category of {} AP: \n{}'.format(style, table.table)) |
|
logger.info("per-category PR curve has output to {} folder.".format( |
|
style + '_pr_curve')) |
|
# flush coco evaluation result |
|
sys.stdout.flush() |
|
return coco_eval.stats |
|
|
|
|
|
def json_eval_results(metric, json_directory, dataset): |
|
""" |
|
cocoapi eval with already exists proposal.json, bbox.json or mask.json |
|
""" |
|
assert metric == 'COCO' |
|
anno_file = dataset.get_anno() |
|
json_file_list = ['proposal.json', 'bbox.json', 'mask.json'] |
|
if json_directory: |
|
assert os.path.exists( |
|
json_directory), "The json directory:{} does not exist".format( |
|
json_directory) |
|
for k, v in enumerate(json_file_list): |
|
json_file_list[k] = os.path.join(str(json_directory), v) |
|
|
|
coco_eval_style = ['proposal', 'bbox', 'segm'] |
|
for i, v_json in enumerate(json_file_list): |
|
if os.path.exists(v_json): |
|
cocoapi_eval(v_json, coco_eval_style[i], anno_file=anno_file) |
|
else: |
|
logger.info("{} not exists!".format(v_json))
|
|
|