You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
234 lines
8.6 KiB
234 lines
8.6 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os |
|
import numpy as np |
|
|
|
import xml.etree.ElementTree as ET |
|
|
|
from paddlers.models.ppdet.core.workspace import register, serializable |
|
|
|
from .dataset import DetDataset |
|
|
|
from paddlers.models.ppdet.utils.logger import setup_logger |
|
logger = setup_logger(__name__) |
|
|
|
|
|
@register |
|
@serializable |
|
class VOCDataSet(DetDataset): |
|
""" |
|
Load dataset with PascalVOC format. |
|
|
|
Notes: |
|
`anno_path` must contains xml file and image file path for annotations. |
|
|
|
Args: |
|
dataset_dir (str): root directory for dataset. |
|
image_dir (str): directory for images. |
|
anno_path (str): voc annotation file path. |
|
data_fields (list): key name of data dictionary, at least have 'image'. |
|
sample_num (int): number of samples to load, -1 means all. |
|
label_list (str): if use_default_label is False, will load |
|
mapping between category and class index. |
|
allow_empty (bool): whether to load empty entry. False as default |
|
empty_ratio (float): the ratio of empty record number to total |
|
record's, if empty_ratio is out of [0. ,1.), do not sample the |
|
records and use all the empty entries. 1. as default |
|
repeat (int): repeat times for dataset, use in benchmark. |
|
""" |
|
|
|
def __init__(self, |
|
dataset_dir=None, |
|
image_dir=None, |
|
anno_path=None, |
|
data_fields=['image'], |
|
sample_num=-1, |
|
label_list=None, |
|
allow_empty=False, |
|
empty_ratio=1., |
|
repeat=1): |
|
super(VOCDataSet, self).__init__( |
|
dataset_dir=dataset_dir, |
|
image_dir=image_dir, |
|
anno_path=anno_path, |
|
data_fields=data_fields, |
|
sample_num=sample_num, |
|
repeat=repeat) |
|
self.label_list = label_list |
|
self.allow_empty = allow_empty |
|
self.empty_ratio = empty_ratio |
|
|
|
def _sample_empty(self, records, num): |
|
# if empty_ratio is out of [0. ,1.), do not sample the records |
|
if self.empty_ratio < 0. or self.empty_ratio >= 1.: |
|
return records |
|
import random |
|
sample_num = min( |
|
int(num * self.empty_ratio / (1 - self.empty_ratio)), len(records)) |
|
records = random.sample(records, sample_num) |
|
return records |
|
|
|
def parse_dataset(self, ): |
|
anno_path = os.path.join(self.dataset_dir, self.anno_path) |
|
image_dir = os.path.join(self.dataset_dir, self.image_dir) |
|
|
|
# mapping category name to class id |
|
# first_class:0, second_class:1, ... |
|
records = [] |
|
empty_records = [] |
|
ct = 0 |
|
cname2cid = {} |
|
if self.label_list: |
|
label_path = os.path.join(self.dataset_dir, self.label_list) |
|
if not os.path.exists(label_path): |
|
raise ValueError("label_list {} does not exists".format( |
|
label_path)) |
|
with open(label_path, 'r') as fr: |
|
label_id = 0 |
|
for line in fr.readlines(): |
|
cname2cid[line.strip()] = label_id |
|
label_id += 1 |
|
else: |
|
cname2cid = pascalvoc_label() |
|
|
|
with open(anno_path, 'r') as fr: |
|
while True: |
|
line = fr.readline() |
|
if not line: |
|
break |
|
img_file, xml_file = [os.path.join(image_dir, x) \ |
|
for x in line.strip().split()[:2]] |
|
if not os.path.exists(img_file): |
|
logger.warning( |
|
'Illegal image file: {}, and it will be ignored'.format( |
|
img_file)) |
|
continue |
|
if not os.path.isfile(xml_file): |
|
logger.warning( |
|
'Illegal xml file: {}, and it will be ignored'.format( |
|
xml_file)) |
|
continue |
|
tree = ET.parse(xml_file) |
|
if tree.find('id') is None: |
|
im_id = np.array([ct]) |
|
else: |
|
im_id = np.array([int(tree.find('id').text)]) |
|
|
|
objs = tree.findall('object') |
|
im_w = float(tree.find('size').find('width').text) |
|
im_h = float(tree.find('size').find('height').text) |
|
if im_w < 0 or im_h < 0: |
|
logger.warning( |
|
'Illegal width: {} or height: {} in annotation, ' |
|
'and {} will be ignored'.format(im_w, im_h, xml_file)) |
|
continue |
|
|
|
num_bbox, i = len(objs), 0 |
|
gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32) |
|
gt_class = np.zeros((num_bbox, 1), dtype=np.int32) |
|
gt_score = np.zeros((num_bbox, 1), dtype=np.float32) |
|
difficult = np.zeros((num_bbox, 1), dtype=np.int32) |
|
for obj in objs: |
|
cname = obj.find('name').text |
|
|
|
# user dataset may not contain difficult field |
|
_difficult = obj.find('difficult') |
|
_difficult = int( |
|
_difficult.text) if _difficult is not None else 0 |
|
|
|
x1 = float(obj.find('bndbox').find('xmin').text) |
|
y1 = float(obj.find('bndbox').find('ymin').text) |
|
x2 = float(obj.find('bndbox').find('xmax').text) |
|
y2 = float(obj.find('bndbox').find('ymax').text) |
|
x1 = max(0, x1) |
|
y1 = max(0, y1) |
|
x2 = min(im_w - 1, x2) |
|
y2 = min(im_h - 1, y2) |
|
if x2 > x1 and y2 > y1: |
|
gt_bbox[i, :] = [x1, y1, x2, y2] |
|
gt_class[i, 0] = cname2cid[cname] |
|
gt_score[i, 0] = 1. |
|
difficult[i, 0] = _difficult |
|
i += 1 |
|
else: |
|
logger.warning( |
|
'Found an invalid bbox in annotations: xml_file: {}' |
|
', x1: {}, y1: {}, x2: {}, y2: {}.'.format( |
|
xml_file, x1, y1, x2, y2)) |
|
gt_bbox = gt_bbox[:i, :] |
|
gt_class = gt_class[:i, :] |
|
gt_score = gt_score[:i, :] |
|
difficult = difficult[:i, :] |
|
|
|
voc_rec = { |
|
'im_file': img_file, |
|
'im_id': im_id, |
|
'h': im_h, |
|
'w': im_w |
|
} if 'image' in self.data_fields else {} |
|
|
|
gt_rec = { |
|
'gt_class': gt_class, |
|
'gt_score': gt_score, |
|
'gt_bbox': gt_bbox, |
|
'difficult': difficult |
|
} |
|
for k, v in gt_rec.items(): |
|
if k in self.data_fields: |
|
voc_rec[k] = v |
|
|
|
if len(objs) == 0: |
|
empty_records.append(voc_rec) |
|
else: |
|
records.append(voc_rec) |
|
|
|
ct += 1 |
|
if self.sample_num > 0 and ct >= self.sample_num: |
|
break |
|
assert ct > 0, 'not found any voc record in %s' % (self.anno_path) |
|
logger.debug('{} samples in file {}'.format(ct, anno_path)) |
|
if self.allow_empty and len(empty_records) > 0: |
|
empty_records = self._sample_empty(empty_records, len(records)) |
|
records += empty_records |
|
self.roidbs, self.cname2cid = records, cname2cid |
|
|
|
def get_label_list(self): |
|
return os.path.join(self.dataset_dir, self.label_list) |
|
|
|
|
|
def pascalvoc_label(): |
|
labels_map = { |
|
'aeroplane': 0, |
|
'bicycle': 1, |
|
'bird': 2, |
|
'boat': 3, |
|
'bottle': 4, |
|
'bus': 5, |
|
'car': 6, |
|
'cat': 7, |
|
'chair': 8, |
|
'cow': 9, |
|
'diningtable': 10, |
|
'dog': 11, |
|
'horse': 12, |
|
'motorbike': 13, |
|
'person': 14, |
|
'pottedplant': 15, |
|
'sheep': 16, |
|
'sofa': 17, |
|
'train': 18, |
|
'tvmonitor': 19 |
|
} |
|
return labels_map
|
|
|