You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
4.4 KiB
97 lines
4.4 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import os.path as osp |
|
import copy |
|
|
|
from paddle.io import Dataset |
|
from paddlers.utils import logging, get_num_workers, get_encoding, path_normalization, is_pic |
|
|
|
|
|
class CDDataset(Dataset): |
|
"""读取变化检测任务数据集,并对样本进行相应的处理(来自SegDataset,图像标签需要两个)。 |
|
|
|
Args: |
|
data_dir (str): 数据集所在的目录路径。 |
|
file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路)。 |
|
label_list (str): 描述数据集包含的类别信息文件路径。默认值为None。 |
|
transforms (paddlers.transforms): 数据集中每个样本的预处理/增强算子。 |
|
num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。 |
|
shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。 |
|
""" |
|
|
|
def __init__(self, |
|
data_dir, |
|
file_list, |
|
label_list=None, |
|
transforms=None, |
|
num_workers='auto', |
|
shuffle=False): |
|
super(CDDataset, self).__init__() |
|
self.transforms = copy.deepcopy(transforms) |
|
# TODO batch padding |
|
self.batch_transforms = None |
|
self.num_workers = get_num_workers(num_workers) |
|
self.shuffle = shuffle |
|
self.file_list = list() |
|
self.labels = list() |
|
|
|
# TODO:非None时,让用户跳转数据集分析生成label_list |
|
# 不要在此处分析label file |
|
if label_list is not None: |
|
with open(label_list, encoding=get_encoding(label_list)) as f: |
|
for line in f: |
|
item = line.strip() |
|
self.labels.append(item) |
|
with open(file_list, encoding=get_encoding(file_list)) as f: |
|
for line in f: |
|
items = line.strip().split() |
|
if len(items) > 3: |
|
raise Exception( |
|
"A space is defined as the delimiter to separate the image and label path, " \ |
|
"so the space cannot be in the image or label path, but the line[{}] of " \ |
|
" file_list[{}] has a space in the image or label path.".format(line, file_list)) |
|
items[0] = path_normalization(items[0]) |
|
items[1] = path_normalization(items[1]) |
|
items[2] = path_normalization(items[2]) |
|
if not is_pic(items[0]) or not is_pic(items[1]) or not is_pic(items[2]): |
|
continue |
|
full_path_im_t1 = osp.join(data_dir, items[0]) |
|
full_path_im_t2 = osp.join(data_dir, items[1]) |
|
full_path_label = osp.join(data_dir, items[2]) |
|
if not osp.exists(full_path_im_t1): |
|
raise IOError('Image file {} does not exist!'.format( |
|
full_path_im_t1)) |
|
if not osp.exists(full_path_im_t2): |
|
raise IOError('Image file {} does not exist!'.format( |
|
full_path_im_t2)) |
|
if not osp.exists(full_path_label): |
|
raise IOError('Label file {} does not exist!'.format( |
|
full_path_label)) |
|
self.file_list.append({ |
|
'image_t1': full_path_im_t1, |
|
'image_t2': full_path_im_t2, |
|
'mask': full_path_label |
|
}) |
|
self.num_samples = len(self.file_list) |
|
logging.info("{} samples in file {}".format( |
|
len(self.file_list), file_list)) |
|
|
|
def __getitem__(self, idx): |
|
sample = copy.deepcopy(self.file_list[idx]) |
|
outputs = self.transforms(sample) |
|
return outputs |
|
|
|
def __len__(self): |
|
return len(self.file_list) |