You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

91 lines
3.0 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import paddle
import paddlers
from paddlers.tasks.change_detector import BaseChangeDetector
from attach_tools import Attach
attach = Attach.to(paddlers.tasks.change_detector)
def make_trainer(net_type, attach_trainer=True):
def _init_func(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
**_params_):
sig = inspect.signature(net_type.__init__)
net_params = {
k: p.default
for k, p in sig.parameters.items() if not p.default is p.empty
}
net_params.pop('self', None)
net_params.pop('num_classes', None)
# Special rule to parse arguments from `_params_`.
# When using pdrs.tasks.load_model, `_params_`` is a dict with the key '_params_'.
# This bypasses the dynamic modification/creation of function signature.
if '_params_' not in _params_:
net_params.update(_params_)
else:
net_params.update(_params_['_params_'])
super(trainer_type, self).__init__(
model_name=net_type.__name__,
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**net_params)
if not issubclass(net_type, paddle.nn.Layer):
raise TypeError("net must be a subclass of paddle.nn.Layer")
trainer_name = net_type.__name__
trainer_type = type(trainer_name, (BaseChangeDetector, ),
{'__init__': _init_func})
if attach_trainer:
trainer_type = attach(trainer_type)
return trainer_type
def make_trainer_and_build(net_type, *args, **kwargs):
trainer_type = make_trainer(net_type, attach_trainer=True)
return trainer_type(*args, **kwargs)
@attach
class CustomTrainer(BaseChangeDetector):
def __init__(self,
num_classes=2,
use_mixed_loss=False,
losses=None,
in_channels=3,
att_types='ct',
use_dropout=False,
**params):
params.update({
'in_channels': in_channels,
'att_types': att_types,
'use_dropout': use_dropout
})
super().__init__(
model_name='CustomModel',
num_classes=num_classes,
use_mixed_loss=use_mixed_loss,
losses=losses,
**params)