You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
105 lines
3.6 KiB
105 lines
3.6 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
|
|
from .generators.builder import build_generator |
|
from ...models.ppgan.models.criterions.builder import build_criterion |
|
from ...models.ppgan.models.base_model import BaseModel |
|
from ...models.ppgan.models.builder import MODELS |
|
from ...models.ppgan.utils.visual import tensor2img |
|
from ...models.ppgan.modules.init import reset_parameters |
|
|
|
|
|
@MODELS.register() |
|
class RCANModel(BaseModel): |
|
"""Base SR model for single image super-resolution. |
|
""" |
|
|
|
def __init__(self, generator, pixel_criterion=None, use_init_weight=False): |
|
""" |
|
Args: |
|
generator (dict): config of generator. |
|
pixel_criterion (dict): config of pixel criterion. |
|
""" |
|
super(RCANModel, self).__init__() |
|
|
|
self.nets['generator'] = build_generator(generator) |
|
self.error_last = 1e8 |
|
self.batch = 0 |
|
if pixel_criterion: |
|
self.pixel_criterion = build_criterion(pixel_criterion) |
|
if use_init_weight: |
|
init_sr_weight(self.nets['generator']) |
|
|
|
def setup_input(self, input): |
|
self.lq = paddle.to_tensor(input['lq']) |
|
self.visual_items['lq'] = self.lq |
|
if 'gt' in input: |
|
self.gt = paddle.to_tensor(input['gt']) |
|
self.visual_items['gt'] = self.gt |
|
self.image_paths = input['lq_path'] |
|
|
|
def forward(self): |
|
pass |
|
|
|
def train_iter(self, optims=None): |
|
optims['optim'].clear_grad() |
|
|
|
self.output = self.nets['generator'](self.lq) |
|
self.visual_items['output'] = self.output |
|
# pixel loss |
|
loss_pixel = self.pixel_criterion(self.output, self.gt) |
|
self.losses['loss_pixel'] = loss_pixel |
|
|
|
skip_threshold = 1e6 |
|
|
|
if loss_pixel.item() < skip_threshold * self.error_last: |
|
loss_pixel.backward() |
|
optims['optim'].step() |
|
else: |
|
print('Skip this batch {}! (Loss: {})'.format(self.batch + 1, |
|
loss_pixel.item())) |
|
self.batch += 1 |
|
|
|
if self.batch % 1000 == 0: |
|
self.error_last = loss_pixel.item() / 1000 |
|
print("update error_last:{}".format(self.error_last)) |
|
|
|
def test_iter(self, metrics=None): |
|
self.nets['generator'].eval() |
|
with paddle.no_grad(): |
|
self.output = self.nets['generator'](self.lq) |
|
self.visual_items['output'] = self.output |
|
self.nets['generator'].train() |
|
|
|
out_img = [] |
|
gt_img = [] |
|
for out_tensor, gt_tensor in zip(self.output, self.gt): |
|
out_img.append(tensor2img(out_tensor, (0., 255.))) |
|
gt_img.append(tensor2img(gt_tensor, (0., 255.))) |
|
|
|
if metrics is not None: |
|
for metric in metrics.values(): |
|
metric.update(out_img, gt_img) |
|
|
|
|
|
def init_sr_weight(net): |
|
def reset_func(m): |
|
if hasattr(m, 'weight') and ( |
|
not isinstance(m, (nn.BatchNorm, nn.BatchNorm2D))): |
|
reset_parameters(m) |
|
|
|
net.apply(reset_func)
|
|
|