You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

337 lines
11 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
import paddle.nn as nn
import paddle.optimizer as optimizer
import paddle.regularizer as regularizer
from paddlers.models.ppdet.core.workspace import register, serializable
__all__ = ['LearningRate', 'OptimizerBuilder']
from paddlers.models.ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
@serializable
class CosineDecay(object):
"""
Cosine learning rate decay
Args:
max_epochs (int): max epochs for the training process.
if you commbine cosine decay with warmup, it is recommended that
the max_iters is much larger than the warmup iter
"""
def __init__(self, max_epochs=1000, use_warmup=True, eta_min=0):
self.max_epochs = max_epochs
self.use_warmup = use_warmup
self.eta_min = eta_min
def __call__(self,
base_lr=None,
boundary=None,
value=None,
step_per_epoch=None):
assert base_lr is not None, "either base LR or values should be provided"
max_iters = self.max_epochs * int(step_per_epoch)
if boundary is not None and value is not None and self.use_warmup:
warmup_iters = len(boundary)
for i in range(int(boundary[-1]), max_iters):
boundary.append(i)
decayed_lr = base_lr * 0.5 * (math.cos(
(i - warmup_iters) * math.pi /
(max_iters - warmup_iters)) + 1)
value.append(decayed_lr)
return optimizer.lr.PiecewiseDecay(boundary, value)
return optimizer.lr.CosineAnnealingDecay(
base_lr, T_max=max_iters, eta_min=self.eta_min)
@serializable
class PiecewiseDecay(object):
"""
Multi step learning rate decay
Args:
gamma (float | list): decay factor
milestones (list): steps at which to decay learning rate
"""
def __init__(self,
gamma=[0.1, 0.01],
milestones=[8, 11],
values=None,
use_warmup=True):
super(PiecewiseDecay, self).__init__()
if type(gamma) is not list:
self.gamma = []
for i in range(len(milestones)):
self.gamma.append(gamma / 10**i)
else:
self.gamma = gamma
self.milestones = milestones
self.values = values
self.use_warmup = use_warmup
def __call__(self,
base_lr=None,
boundary=None,
value=None,
step_per_epoch=None):
if boundary is not None and self.use_warmup:
boundary.extend([int(step_per_epoch) * i for i in self.milestones])
else:
# do not use LinearWarmup
boundary = [int(step_per_epoch) * i for i in self.milestones]
value = [base_lr] # during step[0, boundary[0]] is base_lr
# self.values is setted directly in config
if self.values is not None:
assert len(self.milestones) + 1 == len(self.values)
return optimizer.lr.PiecewiseDecay(boundary, self.values)
# value is computed by self.gamma
value = value if value is not None else [base_lr]
for i in self.gamma:
value.append(base_lr * i)
return optimizer.lr.PiecewiseDecay(boundary, value)
@serializable
class LinearWarmup(object):
"""
Warm up learning rate linearly
Args:
steps (int): warm up steps
start_factor (float): initial learning rate factor
"""
def __init__(self, steps=500, start_factor=1. / 3):
super(LinearWarmup, self).__init__()
self.steps = steps
self.start_factor = start_factor
def __call__(self, base_lr, step_per_epoch):
boundary = []
value = []
for i in range(self.steps + 1):
if self.steps > 0:
alpha = i / self.steps
factor = self.start_factor * (1 - alpha) + alpha
lr = base_lr * factor
value.append(lr)
if i > 0:
boundary.append(i)
return boundary, value
@serializable
class BurninWarmup(object):
"""
Warm up learning rate in burnin mode
Args:
steps (int): warm up steps
"""
def __init__(self, steps=1000):
super(BurninWarmup, self).__init__()
self.steps = steps
def __call__(self, base_lr, step_per_epoch):
boundary = []
value = []
burnin = min(self.steps, step_per_epoch)
for i in range(burnin + 1):
factor = (i * 1.0 / burnin)**4
lr = base_lr * factor
value.append(lr)
if i > 0:
boundary.append(i)
return boundary, value
@register
class LearningRate(object):
"""
Learning Rate configuration
Args:
base_lr (float): base learning rate
schedulers (list): learning rate schedulers
"""
__category__ = 'optim'
def __init__(self,
base_lr=0.01,
schedulers=[PiecewiseDecay(), LinearWarmup()]):
super(LearningRate, self).__init__()
self.base_lr = base_lr
self.schedulers = schedulers
def __call__(self, step_per_epoch):
assert len(self.schedulers) >= 1
if not self.schedulers[0].use_warmup:
return self.schedulers[0](base_lr=self.base_lr,
step_per_epoch=step_per_epoch)
# TODO: split warmup & decay
# warmup
boundary, value = self.schedulers[1](self.base_lr, step_per_epoch)
# decay
decay_lr = self.schedulers[0](self.base_lr, boundary, value,
step_per_epoch)
return decay_lr
@register
class OptimizerBuilder():
"""
Build optimizer handles
Args:
regularizer (object): an `Regularizer` instance
optimizer (object): an `Optimizer` instance
"""
__category__ = 'optim'
def __init__(self,
clip_grad_by_norm=None,
regularizer={'type': 'L2',
'factor': .0001},
optimizer={'type': 'Momentum',
'momentum': .9}):
self.clip_grad_by_norm = clip_grad_by_norm
self.regularizer = regularizer
self.optimizer = optimizer
def __call__(self, learning_rate, model=None):
if self.clip_grad_by_norm is not None:
grad_clip = nn.ClipGradByGlobalNorm(
clip_norm=self.clip_grad_by_norm)
else:
grad_clip = None
if self.regularizer and self.regularizer != 'None':
reg_type = self.regularizer['type'] + 'Decay'
reg_factor = self.regularizer['factor']
regularization = getattr(regularizer, reg_type)(reg_factor)
else:
regularization = None
optim_args = self.optimizer.copy()
optim_type = optim_args['type']
del optim_args['type']
if optim_type != 'AdamW':
optim_args['weight_decay'] = regularization
op = getattr(optimizer, optim_type)
if 'without_weight_decay_params' in optim_args:
keys = optim_args['without_weight_decay_params']
params = [{
'params': [
p for n, p in model.named_parameters()
if any([k in n for k in keys])
],
'weight_decay': 0.
}, {
'params': [
p for n, p in model.named_parameters()
if all([k not in n for k in keys])
]
}]
del optim_args['without_weight_decay_params']
else:
params = model.parameters()
return op(learning_rate=learning_rate,
parameters=params,
grad_clip=grad_clip,
**optim_args)
class ModelEMA(object):
"""
Exponential Weighted Average for Deep Neutal Networks
Args:
model (nn.Layer): Detector of model.
decay (int): The decay used for updating ema parameter.
Ema's parameter are updated with the formula:
`ema_param = decay * ema_param + (1 - decay) * cur_param`.
Defaults is 0.9998.
use_thres_step (bool): Whether set decay by thres_step or not
cycle_epoch (int): The epoch of interval to reset ema_param and
step. Defaults is -1, which means not reset. Its function is to
add a regular effect to ema, which is set according to experience
and is effective when the total training epoch is large.
"""
def __init__(self,
model,
decay=0.9998,
use_thres_step=False,
cycle_epoch=-1):
self.step = 0
self.epoch = 0
self.decay = decay
self.state_dict = dict()
for k, v in model.state_dict().items():
self.state_dict[k] = paddle.zeros_like(v)
self.use_thres_step = use_thres_step
self.cycle_epoch = cycle_epoch
def reset(self):
self.step = 0
self.epoch = 0
for k, v in self.state_dict.items():
self.state_dict[k] = paddle.zeros_like(v)
def update(self, model):
if self.use_thres_step:
decay = min(self.decay, (1 + self.step) / (10 + self.step))
else:
decay = self.decay
self._decay = decay
model_dict = model.state_dict()
for k, v in self.state_dict.items():
v = decay * v + (1 - decay) * model_dict[k]
v.stop_gradient = True
self.state_dict[k] = v
self.step += 1
def apply(self):
if self.step == 0:
return self.state_dict
state_dict = dict()
for k, v in self.state_dict.items():
v = v / (1 - self._decay**self.step)
v.stop_gradient = True
state_dict[k] = v
self.epoch += 1
if self.cycle_epoch > 0 and self.epoch == self.cycle_epoch:
self.reset()
return state_dict