You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
218 lines
7.4 KiB
218 lines
7.4 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
# Refer to |
|
# https://github.com/GeoZcx/A-deeply-supervised-image-fusion-network-for-change-detection-in-remote-sensing-images . |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
from paddle.vision.models import vgg16 |
|
|
|
from .layers import Conv1x1, make_norm, ChannelAttention, SpatialAttention |
|
|
|
|
|
class DSIFN(nn.Layer): |
|
""" |
|
The DSIFN implementation based on PaddlePaddle. |
|
|
|
The original article refers to |
|
C. Zhang, et al., "A deeply supervised image fusion network for change detection in high resolution bi-temporal remote |
|
sensing images" |
|
(https://www.sciencedirect.com/science/article/pii/S0924271620301532). |
|
|
|
Note that in this implementation, there is a flexible number of target classes. |
|
|
|
Args: |
|
num_classes (int): The number of target classes. |
|
use_dropout (bool, optional): A bool value that indicates whether to use dropout layers. When the model is trained |
|
on a relatively small dataset, the dropout layers help prevent overfitting. Default: False. |
|
""" |
|
|
|
def __init__(self, num_classes, use_dropout=False): |
|
super(DSIFN, self).__init__() |
|
|
|
self.encoder1 = self.encoder2 = VGG16FeaturePicker() |
|
|
|
self.sa1 = SpatialAttention() |
|
self.sa2 = SpatialAttention() |
|
self.sa3 = SpatialAttention() |
|
self.sa4 = SpatialAttention() |
|
self.sa5 = SpatialAttention() |
|
|
|
self.ca1 = ChannelAttention(in_ch=1024) |
|
self.bn_ca1 = make_norm(1024) |
|
self.o1_conv1 = conv2d_bn(1024, 512, use_dropout) |
|
self.o1_conv2 = conv2d_bn(512, 512, use_dropout) |
|
self.bn_sa1 = make_norm(512) |
|
self.o1_conv3 = Conv1x1(512, num_classes) |
|
self.trans_conv1 = nn.Conv2DTranspose(512, 512, kernel_size=2, stride=2) |
|
|
|
self.ca2 = ChannelAttention(in_ch=1536) |
|
self.bn_ca2 = make_norm(1536) |
|
self.o2_conv1 = conv2d_bn(1536, 512, use_dropout) |
|
self.o2_conv2 = conv2d_bn(512, 256, use_dropout) |
|
self.o2_conv3 = conv2d_bn(256, 256, use_dropout) |
|
self.bn_sa2 = make_norm(256) |
|
self.o2_conv4 = Conv1x1(256, num_classes) |
|
self.trans_conv2 = nn.Conv2DTranspose(256, 256, kernel_size=2, stride=2) |
|
|
|
self.ca3 = ChannelAttention(in_ch=768) |
|
self.o3_conv1 = conv2d_bn(768, 256, use_dropout) |
|
self.o3_conv2 = conv2d_bn(256, 128, use_dropout) |
|
self.o3_conv3 = conv2d_bn(128, 128, use_dropout) |
|
self.bn_sa3 = make_norm(128) |
|
self.o3_conv4 = Conv1x1(128, num_classes) |
|
self.trans_conv3 = nn.Conv2DTranspose(128, 128, kernel_size=2, stride=2) |
|
|
|
self.ca4 = ChannelAttention(in_ch=384) |
|
self.o4_conv1 = conv2d_bn(384, 128, use_dropout) |
|
self.o4_conv2 = conv2d_bn(128, 64, use_dropout) |
|
self.o4_conv3 = conv2d_bn(64, 64, use_dropout) |
|
self.bn_sa4 = make_norm(64) |
|
self.o4_conv4 = Conv1x1(64, num_classes) |
|
self.trans_conv4 = nn.Conv2DTranspose(64, 64, kernel_size=2, stride=2) |
|
|
|
self.ca5 = ChannelAttention(in_ch=192) |
|
self.o5_conv1 = conv2d_bn(192, 64, use_dropout) |
|
self.o5_conv2 = conv2d_bn(64, 32, use_dropout) |
|
self.o5_conv3 = conv2d_bn(32, 16, use_dropout) |
|
self.bn_sa5 = make_norm(16) |
|
self.o5_conv4 = Conv1x1(16, num_classes) |
|
|
|
self.init_weight() |
|
|
|
def forward(self, t1, t2): |
|
# Extract bi-temporal features. |
|
with paddle.no_grad(): |
|
self.encoder1.eval(), self.encoder2.eval() |
|
t1_feats = self.encoder1(t1) |
|
t2_feats = self.encoder2(t2) |
|
|
|
t1_f_l3, t1_f_l8, t1_f_l15, t1_f_l22, t1_f_l29 = t1_feats |
|
t2_f_l3, t2_f_l8, t2_f_l15, t2_f_l22, t2_f_l29, = t2_feats |
|
|
|
aux_x = [] |
|
|
|
# Multi-level decoding |
|
x = paddle.concat([t1_f_l29, t2_f_l29], axis=1) |
|
x = self.o1_conv1(x) |
|
x = self.o1_conv2(x) |
|
x = self.sa1(x) * x |
|
x = self.bn_sa1(x) |
|
if self.training: |
|
aux_x.append(x) |
|
|
|
x = self.trans_conv1(x) |
|
x = paddle.concat([x, t1_f_l22, t2_f_l22], axis=1) |
|
x = self.ca2(x) * x |
|
x = self.o2_conv1(x) |
|
x = self.o2_conv2(x) |
|
x = self.o2_conv3(x) |
|
x = self.sa2(x) * x |
|
x = self.bn_sa2(x) |
|
if self.training: |
|
aux_x.append(x) |
|
|
|
x = self.trans_conv2(x) |
|
x = paddle.concat([x, t1_f_l15, t2_f_l15], axis=1) |
|
x = self.ca3(x) * x |
|
x = self.o3_conv1(x) |
|
x = self.o3_conv2(x) |
|
x = self.o3_conv3(x) |
|
x = self.sa3(x) * x |
|
x = self.bn_sa3(x) |
|
if self.training: |
|
aux_x.append(x) |
|
|
|
x = self.trans_conv3(x) |
|
x = paddle.concat([x, t1_f_l8, t2_f_l8], axis=1) |
|
x = self.ca4(x) * x |
|
x = self.o4_conv1(x) |
|
x = self.o4_conv2(x) |
|
x = self.o4_conv3(x) |
|
x = self.sa4(x) * x |
|
x = self.bn_sa4(x) |
|
if self.training: |
|
aux_x.append(x) |
|
|
|
x = self.trans_conv4(x) |
|
x = paddle.concat([x, t1_f_l3, t2_f_l3], axis=1) |
|
x = self.ca5(x) * x |
|
x = self.o5_conv1(x) |
|
x = self.o5_conv2(x) |
|
x = self.o5_conv3(x) |
|
x = self.sa5(x) * x |
|
x = self.bn_sa5(x) |
|
|
|
out5 = self.o5_conv4(x) |
|
|
|
if not self.training: |
|
return [out5] |
|
else: |
|
size = paddle.shape(t1)[2:] |
|
out1 = F.interpolate( |
|
self.o1_conv3(aux_x[0]), |
|
size=size, |
|
mode='bilinear', |
|
align_corners=True) |
|
out2 = F.interpolate( |
|
self.o2_conv4(aux_x[1]), |
|
size=size, |
|
mode='bilinear', |
|
align_corners=True) |
|
out3 = F.interpolate( |
|
self.o3_conv4(aux_x[2]), |
|
size=size, |
|
mode='bilinear', |
|
align_corners=True) |
|
out4 = F.interpolate( |
|
self.o4_conv4(aux_x[3]), |
|
size=size, |
|
mode='bilinear', |
|
align_corners=True) |
|
return [out5, out4, out3, out2, out1] |
|
|
|
def init_weight(self): |
|
# Do nothing |
|
pass |
|
|
|
|
|
class VGG16FeaturePicker(nn.Layer): |
|
def __init__(self, indices=(3, 8, 15, 22, 29)): |
|
super(VGG16FeaturePicker, self).__init__() |
|
features = list(vgg16(pretrained=True).features)[:30] |
|
self.features = nn.LayerList(features) |
|
self.features.eval() |
|
self.indices = set(indices) |
|
|
|
def forward(self, x): |
|
picked_feats = [] |
|
for idx, model in enumerate(self.features): |
|
x = model(x) |
|
if idx in self.indices: |
|
picked_feats.append(x) |
|
return picked_feats |
|
|
|
|
|
def conv2d_bn(in_ch, out_ch, with_dropout=True): |
|
lst = [ |
|
nn.Conv2D( |
|
in_ch, out_ch, kernel_size=3, stride=1, padding=1), |
|
nn.PReLU(), |
|
make_norm(out_ch), |
|
] |
|
if with_dropout: |
|
lst.append(nn.Dropout(p=0.6)) |
|
return nn.Sequential(*lst)
|
|
|