You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

65 lines
2.6 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
from .layers import Conv7x7
class CDNet(nn.Layer):
"""
The CDNet implementation based on PaddlePaddle.
The original article refers to
Pablo F. Alcantarilla, et al., "Street-View Change Detection with Deconvolut
ional Networks"
(https://link.springer.com/article/10.1007/s10514-018-9734-5).
Args:
in_channels (int): Number of bands of the input images.
num_classes (int): Number of target classes.
"""
def __init__(self, in_channels, num_classes):
super(CDNet, self).__init__()
self.conv1 = Conv7x7(in_channels, 64, norm=True, act=True)
self.pool1 = nn.MaxPool2D(2, 2, return_mask=True)
self.conv2 = Conv7x7(64, 64, norm=True, act=True)
self.pool2 = nn.MaxPool2D(2, 2, return_mask=True)
self.conv3 = Conv7x7(64, 64, norm=True, act=True)
self.pool3 = nn.MaxPool2D(2, 2, return_mask=True)
self.conv4 = Conv7x7(64, 64, norm=True, act=True)
self.pool4 = nn.MaxPool2D(2, 2, return_mask=True)
self.conv5 = Conv7x7(64, 64, norm=True, act=True)
self.upool4 = nn.MaxUnPool2D(2, 2)
self.conv6 = Conv7x7(64, 64, norm=True, act=True)
self.upool3 = nn.MaxUnPool2D(2, 2)
self.conv7 = Conv7x7(64, 64, norm=True, act=True)
self.upool2 = nn.MaxUnPool2D(2, 2)
self.conv8 = Conv7x7(64, 64, norm=True, act=True)
self.upool1 = nn.MaxUnPool2D(2, 2)
self.conv_out = Conv7x7(64, num_classes, norm=False, act=False)
def forward(self, t1, t2):
x = paddle.concat([t1, t2], axis=1)
x, ind1 = self.pool1(self.conv1(x))
x, ind2 = self.pool2(self.conv2(x))
x, ind3 = self.pool3(self.conv3(x))
x, ind4 = self.pool4(self.conv4(x))
x = self.conv5(self.upool4(x, ind4))
x = self.conv6(self.upool3(x, ind3))
x = self.conv7(self.upool2(x, ind2))
x = self.conv8(self.upool1(x, ind1))
return [self.conv_out(x)]