You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

63 lines
2.3 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import numpy as np
class ExponentialMovingAverage():
"""
Exponential Moving Average
Code was heavily based on https://github.com/Wanger-SJTU/SegToolbox.Pytorch/blob/master/lib/utils/ema.py
"""
def __init__(self, model, decay, thres_steps=True):
self._model = model
self._decay = decay
self._thres_steps = thres_steps
self._shadow = {}
self._backup = {}
def register(self):
self._update_step = 0
for name, param in self._model.named_parameters():
if param.stop_gradient is False:
self._shadow[name] = param.numpy().copy()
def update(self):
decay = min(self._decay, (1 + self._update_step) / (
10 + self._update_step)) if self._thres_steps else self._decay
for name, param in self._model.named_parameters():
if param.stop_gradient is False:
assert name in self._shadow
new_val = np.array(param.numpy().copy())
old_val = np.array(self._shadow[name])
new_average = decay * old_val + (1 - decay) * new_val
self._shadow[name] = new_average
self._update_step += 1
return decay
def apply(self):
for name, param in self._model.named_parameters():
if param.stop_gradient is False:
assert name in self._shadow
self._backup[name] = np.array(param.numpy().copy())
param.set_value(np.array(self._shadow[name]))
def restore(self):
for name, param in self._model.named_parameters():
if param.stop_gradient is False:
assert name in self._backup
param.set_value(self._backup[name])
self._backup = {}