You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

139 lines
4.6 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import errno
import os
import re
import shutil
import tempfile
import paddle
from ppcls.utils import logger
__all__ = ['init_model', 'save_model']
def _mkdir_if_not_exist(path):
"""
mkdir if not exists, ignore the exception when multiprocess mkdir together
"""
if not os.path.exists(path):
try:
os.makedirs(path)
except OSError as e:
if e.errno == errno.EEXIST and os.path.isdir(path):
logger.warning(
'be happy if some process has already created {}'.format(
path))
else:
raise OSError('Failed to mkdir {}'.format(path))
def _load_state(path):
if os.path.exists(path + '.pdopt'):
# XXX another hack to ignore the optimizer state
tmp = tempfile.mkdtemp()
dst = os.path.join(tmp, os.path.basename(os.path.normpath(path)))
shutil.copy(path + '.pdparams', dst + '.pdparams')
state = paddle.static.load_program_state(dst)
shutil.rmtree(tmp)
else:
state = paddle.static.load_program_state(path)
return state
def load_params(exe, prog, path, ignore_params=None):
"""
Load model from the given path.
Args:
exe (fluid.Executor): The fluid.Executor object.
prog (fluid.Program): load weight to which Program object.
path (string): URL string or loca model path.
ignore_params (list): ignore variable to load when finetuning.
It can be specified by finetune_exclude_pretrained_params
and the usage can refer to the document
docs/advanced_tutorials/TRANSFER_LEARNING.md
"""
if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
raise ValueError("Model pretrain path {} does not "
"exists.".format(path))
logger.info("Loading parameters from {}...".format(path))
ignore_set = set()
state = _load_state(path)
# ignore the parameter which mismatch the shape
# between the model and pretrain weight.
all_var_shape = {}
for block in prog.blocks:
for param in block.all_parameters():
all_var_shape[param.name] = param.shape
ignore_set.update([
name for name, shape in all_var_shape.items()
if name in state and shape != state[name].shape
])
if ignore_params:
all_var_names = [var.name for var in prog.list_vars()]
ignore_list = filter(
lambda var: any([re.match(name, var) for name in ignore_params]),
all_var_names)
ignore_set.update(list(ignore_list))
if len(ignore_set) > 0:
for k in ignore_set:
if k in state:
logger.warning(
'variable {} is already excluded automatically'.format(k))
del state[k]
paddle.static.set_program_state(prog, state)
def init_model(config, program, exe):
"""
load model from checkpoint or pretrained_model
"""
checkpoints = config.get('checkpoints')
if checkpoints:
paddle.static.load(program, checkpoints, exe)
logger.info("Finish initing model from {}".format(checkpoints))
return
pretrained_model = config.get('pretrained_model')
if pretrained_model:
if not isinstance(pretrained_model, list):
pretrained_model = [pretrained_model]
for pretrain in pretrained_model:
load_params(exe, program, pretrain)
logger.info("Finish initing model from {}".format(pretrained_model))
def save_model(program, model_path, epoch_id, prefix='ppcls'):
"""
save model to the target path
"""
if paddle.distributed.get_rank() != 0:
return
model_path = os.path.join(model_path, str(epoch_id))
_mkdir_if_not_exist(model_path)
model_prefix = os.path.join(model_path, prefix)
paddle.static.save(program, model_prefix)
logger.info("Already save model in {}".format(model_path))