You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

79 lines
3.2 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from paddle.io import DistributedBatchSampler, Sampler
from ppcls.utils import logger
from ppcls.data.dataloader.mix_dataset import MixDataset
from ppcls.data import dataloader
class MixSampler(DistributedBatchSampler):
def __init__(self, dataset, batch_size, sample_configs, iter_per_epoch):
super().__init__(dataset, batch_size)
assert isinstance(dataset,
MixDataset), "MixSampler only support MixDataset"
self.sampler_list = []
self.batch_size = batch_size
self.start_list = []
self.length = iter_per_epoch
dataset_list = dataset.get_dataset_list()
batch_size_left = self.batch_size
self.iter_list = []
for i, config_i in enumerate(sample_configs):
self.start_list.append(dataset_list[i][1])
sample_method = config_i.pop("name")
ratio_i = config_i.pop("ratio")
if i < len(sample_configs) - 1:
batch_size_i = int(self.batch_size * ratio_i)
batch_size_left -= batch_size_i
else:
batch_size_i = batch_size_left
assert batch_size_i <= len(dataset_list[i][2])
config_i["batch_size"] = batch_size_i
if sample_method == "DistributedBatchSampler":
sampler_i = DistributedBatchSampler(dataset_list[i][2],
**config_i)
else:
sampler_i = getattr(dataloader, sample_method)(
dataset_list[i][2], **config_i)
self.sampler_list.append(sampler_i)
self.iter_list.append(iter(sampler_i))
self.length += len(dataset_list[i][2]) * ratio_i
self.iter_counter = 0
def __iter__(self):
while self.iter_counter < self.length:
batch = []
for i, iter_i in enumerate(self.iter_list):
batch_i = next(iter_i, None)
if batch_i is None:
iter_i = iter(self.sampler_list[i])
self.iter_list[i] = iter_i
batch_i = next(iter_i, None)
assert batch_i is not None, "dataset {} return None".format(
i)
batch += [idx + self.start_list[i] for idx in batch_i]
if len(batch) == self.batch_size:
self.iter_counter += 1
yield batch
else:
logger.info("Some dataset reaches end")
self.iter_counter = 0
def __len__(self):
return self.length