You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
84 lines
2.9 KiB
84 lines
2.9 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import random |
|
import os.path |
|
|
|
from .base_dataset import BaseDataset |
|
from .builder import DATASETS |
|
|
|
|
|
@DATASETS.register() |
|
class UnpairedDataset(BaseDataset): |
|
""" |
|
""" |
|
def __init__(self, dataroot_a, dataroot_b, max_size, is_train, preprocess): |
|
"""Initialize unpaired dataset class. |
|
|
|
Args: |
|
dataroot_a (str): Directory of dataset a. |
|
dataroot_b (str): Directory of dataset b. |
|
max_size (int): max size of dataset size. |
|
is_train (int): whether in train mode. |
|
preprocess (list[dict]): A sequence of data preprocess config. |
|
|
|
""" |
|
super(UnpairedDataset, self).__init__(preprocess) |
|
self.dir_A = os.path.join(dataroot_a) |
|
self.dir_B = os.path.join(dataroot_b) |
|
self.is_train = is_train |
|
self.data_infos_a = self.prepare_data_infos(self.dir_A) |
|
self.data_infos_b = self.prepare_data_infos(self.dir_B) |
|
self.size_a = len(self.data_infos_a) |
|
self.size_b = len(self.data_infos_b) |
|
|
|
def prepare_data_infos(self, dataroot): |
|
"""Load unpaired image paths of one domain. |
|
|
|
Args: |
|
dataroot (str): Path to the folder root for unpaired images of |
|
one domain. |
|
|
|
Returns: |
|
list[dict]: List that contains unpaired image paths of one domain. |
|
""" |
|
data_infos = [] |
|
paths = sorted(self.scan_folder(dataroot)) |
|
for path in paths: |
|
data_infos.append(dict(path=path)) |
|
return data_infos |
|
|
|
def __getitem__(self, idx): |
|
if self.is_train: |
|
img_a_path = self.data_infos_a[idx % self.size_a]['path'] |
|
idx_b = random.randint(0, self.size_b - 1) |
|
img_b_path = self.data_infos_b[idx_b]['path'] |
|
datas = dict(A_path=img_a_path, B_path=img_b_path) |
|
else: |
|
img_a_path = self.data_infos_a[idx % self.size_a]['path'] |
|
img_b_path = self.data_infos_b[idx % self.size_b]['path'] |
|
datas = dict(A_path=img_a_path, B_path=img_b_path) |
|
|
|
if self.preprocess: |
|
datas = self.preprocess(datas) |
|
|
|
return datas |
|
|
|
def __len__(self): |
|
"""Return the total number of images in the dataset. |
|
|
|
As we have two datasets with potentially different number of images, |
|
we take a maximum of |
|
""" |
|
return max(self.size_a, self.size_b)
|
|
|