You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
146 lines
4.8 KiB
146 lines
4.8 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import logging |
|
import os |
|
import numpy as np |
|
from PIL import Image |
|
import paddle |
|
import paddle.vision.transforms as T |
|
from paddle.io import Dataset |
|
import cv2 |
|
import random |
|
|
|
from .builder import DATASETS |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def data_transform(img, |
|
resize_w, |
|
resize_h, |
|
load_size=286, |
|
pos=[0, 0, 256, 256], |
|
flip=True, |
|
is_image=True): |
|
if is_image: |
|
resized = img.resize((resize_w, resize_h), Image.BICUBIC) |
|
else: |
|
resized = img.resize((resize_w, resize_h), Image.NEAREST) |
|
croped = resized.crop((pos[0], pos[1], pos[2], pos[3])) |
|
fliped = ImageOps.mirror(croped) if flip else croped |
|
fliped = np.array(fliped) # transform to numpy array |
|
expanded = np.expand_dims(fliped, 2) if len(fliped.shape) < 3 else fliped |
|
transposed = np.transpose(expanded, (2, 0, 1)).astype('float32') |
|
if is_image: |
|
normalized = transposed / 255. * 2. - 1. |
|
else: |
|
normalized = transposed |
|
return normalized |
|
|
|
|
|
@DATASETS.register() |
|
class PhotoPenDataset(Dataset): |
|
def __init__(self, content_root, load_size, crop_size): |
|
super(PhotoPenDataset, self).__init__() |
|
inst_dir = os.path.join(content_root, 'train_inst') |
|
_, _, inst_list = next(os.walk(inst_dir)) |
|
self.inst_list = np.sort(inst_list) |
|
self.content_root = content_root |
|
self.load_size = load_size |
|
self.crop_size = crop_size |
|
|
|
def __getitem__(self, idx): |
|
ins = Image.open( |
|
os.path.join(self.content_root, 'train_inst', self.inst_list[idx])) |
|
img = Image.open( |
|
os.path.join(self.content_root, 'train_img', self.inst_list[idx] |
|
.replace(".png", ".jpg"))) |
|
img = img.convert('RGB') |
|
|
|
w, h = img.size |
|
resize_w, resize_h = 0, 0 |
|
if w < h: |
|
resize_w, resize_h = self.load_size, int(h * self.load_size / w) |
|
else: |
|
resize_w, resize_h = int(w * self.load_size / h), self.load_size |
|
left = random.randint(0, resize_w - self.crop_size) |
|
top = random.randint(0, resize_h - self.crop_size) |
|
flip = False |
|
|
|
img = data_transform( |
|
img, |
|
resize_w, |
|
resize_h, |
|
load_size=self.load_size, |
|
pos=[left, top, left + self.crop_size, top + self.crop_size], |
|
flip=flip, |
|
is_image=True) |
|
ins = data_transform( |
|
ins, |
|
resize_w, |
|
resize_h, |
|
load_size=self.load_size, |
|
pos=[left, top, left + self.crop_size, top + self.crop_size], |
|
flip=flip, |
|
is_image=False) |
|
return {'img': img, 'ins': ins, 'img_path': self.inst_list[idx]} |
|
|
|
def __len__(self): |
|
return len(self.inst_list) |
|
|
|
def name(self): |
|
return 'PhotoPenDataset' |
|
|
|
|
|
@DATASETS.register() |
|
class PhotoPenDataset_test(Dataset): |
|
def __init__(self, content_root, load_size, crop_size): |
|
super(PhotoPenDataset_test, self).__init__() |
|
inst_dir = os.path.join(content_root, 'test_inst') |
|
_, _, inst_list = next(os.walk(inst_dir)) |
|
self.inst_list = np.sort(inst_list) |
|
self.content_root = content_root |
|
self.load_size = load_size |
|
self.crop_size = crop_size |
|
|
|
def __getitem__(self, idx): |
|
ins = Image.open( |
|
os.path.join(self.content_root, 'test_inst', self.inst_list[idx])) |
|
|
|
w, h = ins.size |
|
resize_w, resize_h = 0, 0 |
|
if w < h: |
|
resize_w, resize_h = self.load_size, int(h * self.load_size / w) |
|
else: |
|
resize_w, resize_h = int(w * self.load_size / h), self.load_size |
|
left = random.randint(0, resize_w - self.crop_size) |
|
top = random.randint(0, resize_h - self.crop_size) |
|
flip = False |
|
|
|
ins = data_transform( |
|
ins, |
|
resize_w, |
|
resize_h, |
|
load_size=self.load_size, |
|
pos=[left, top, left + self.crop_size, top + self.crop_size], |
|
flip=flip, |
|
is_image=False) |
|
return {'ins': ins, 'img_path': self.inst_list[idx]} |
|
|
|
def __len__(self): |
|
return len(self.inst_list) |
|
|
|
def name(self): |
|
return 'PhotoPenDataset'
|
|
|