You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

146 lines
4.8 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import numpy as np
from PIL import Image
import paddle
import paddle.vision.transforms as T
from paddle.io import Dataset
import cv2
import random
from .builder import DATASETS
logger = logging.getLogger(__name__)
def data_transform(img,
resize_w,
resize_h,
load_size=286,
pos=[0, 0, 256, 256],
flip=True,
is_image=True):
if is_image:
resized = img.resize((resize_w, resize_h), Image.BICUBIC)
else:
resized = img.resize((resize_w, resize_h), Image.NEAREST)
croped = resized.crop((pos[0], pos[1], pos[2], pos[3]))
fliped = ImageOps.mirror(croped) if flip else croped
fliped = np.array(fliped) # transform to numpy array
expanded = np.expand_dims(fliped, 2) if len(fliped.shape) < 3 else fliped
transposed = np.transpose(expanded, (2, 0, 1)).astype('float32')
if is_image:
normalized = transposed / 255. * 2. - 1.
else:
normalized = transposed
return normalized
@DATASETS.register()
class PhotoPenDataset(Dataset):
def __init__(self, content_root, load_size, crop_size):
super(PhotoPenDataset, self).__init__()
inst_dir = os.path.join(content_root, 'train_inst')
_, _, inst_list = next(os.walk(inst_dir))
self.inst_list = np.sort(inst_list)
self.content_root = content_root
self.load_size = load_size
self.crop_size = crop_size
def __getitem__(self, idx):
ins = Image.open(
os.path.join(self.content_root, 'train_inst', self.inst_list[idx]))
img = Image.open(
os.path.join(self.content_root, 'train_img', self.inst_list[idx]
.replace(".png", ".jpg")))
img = img.convert('RGB')
w, h = img.size
resize_w, resize_h = 0, 0
if w < h:
resize_w, resize_h = self.load_size, int(h * self.load_size / w)
else:
resize_w, resize_h = int(w * self.load_size / h), self.load_size
left = random.randint(0, resize_w - self.crop_size)
top = random.randint(0, resize_h - self.crop_size)
flip = False
img = data_transform(
img,
resize_w,
resize_h,
load_size=self.load_size,
pos=[left, top, left + self.crop_size, top + self.crop_size],
flip=flip,
is_image=True)
ins = data_transform(
ins,
resize_w,
resize_h,
load_size=self.load_size,
pos=[left, top, left + self.crop_size, top + self.crop_size],
flip=flip,
is_image=False)
return {'img': img, 'ins': ins, 'img_path': self.inst_list[idx]}
def __len__(self):
return len(self.inst_list)
def name(self):
return 'PhotoPenDataset'
@DATASETS.register()
class PhotoPenDataset_test(Dataset):
def __init__(self, content_root, load_size, crop_size):
super(PhotoPenDataset_test, self).__init__()
inst_dir = os.path.join(content_root, 'test_inst')
_, _, inst_list = next(os.walk(inst_dir))
self.inst_list = np.sort(inst_list)
self.content_root = content_root
self.load_size = load_size
self.crop_size = crop_size
def __getitem__(self, idx):
ins = Image.open(
os.path.join(self.content_root, 'test_inst', self.inst_list[idx]))
w, h = ins.size
resize_w, resize_h = 0, 0
if w < h:
resize_w, resize_h = self.load_size, int(h * self.load_size / w)
else:
resize_w, resize_h = int(w * self.load_size / h), self.load_size
left = random.randint(0, resize_w - self.crop_size)
top = random.randint(0, resize_h - self.crop_size)
flip = False
ins = data_transform(
ins,
resize_w,
resize_h,
load_size=self.load_size,
pos=[left, top, left + self.crop_size, top + self.crop_size],
flip=flip,
is_image=False)
return {'ins': ins, 'img_path': self.inst_list[idx]}
def __len__(self):
return len(self.inst_list)
def name(self):
return 'PhotoPenDataset'