You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

242 lines
8.8 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Constant, Uniform, Normal, XavierUniform
from paddlers.models.ppdet.core.workspace import register, serializable
from paddle.regularizer import L2Decay
from paddlers.models.ppdet.modeling.layers import DeformableConvV2, ConvNormLayer, LiteConv
import math
from paddlers.models.ppdet.modeling.ops import batch_norm
from ..shape_spec import ShapeSpec
__all__ = ['TTFFPN']
class Upsample(nn.Layer):
def __init__(self, ch_in, ch_out, norm_type='bn'):
super(Upsample, self).__init__()
fan_in = ch_in * 3 * 3
stdv = 1. / math.sqrt(fan_in)
self.dcn = DeformableConvV2(
ch_in,
ch_out,
kernel_size=3,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
bias_attr=ParamAttr(
initializer=Constant(0),
regularizer=L2Decay(0.),
learning_rate=2.),
lr_scale=2.,
regularizer=L2Decay(0.))
self.bn = batch_norm(
ch_out, norm_type=norm_type, initializer=Constant(1.))
def forward(self, feat):
dcn = self.dcn(feat)
bn = self.bn(dcn)
relu = F.relu(bn)
out = F.interpolate(relu, scale_factor=2., mode='bilinear')
return out
class DeConv(nn.Layer):
def __init__(self, ch_in, ch_out, norm_type='bn'):
super(DeConv, self).__init__()
self.deconv = nn.Sequential()
conv1 = ConvNormLayer(
ch_in=ch_in,
ch_out=ch_out,
stride=1,
filter_size=1,
norm_type=norm_type,
initializer=XavierUniform())
conv2 = nn.Conv2DTranspose(
in_channels=ch_out,
out_channels=ch_out,
kernel_size=4,
padding=1,
stride=2,
groups=ch_out,
weight_attr=ParamAttr(initializer=XavierUniform()),
bias_attr=False)
bn = batch_norm(ch_out, norm_type=norm_type, norm_decay=0.)
conv3 = ConvNormLayer(
ch_in=ch_out,
ch_out=ch_out,
stride=1,
filter_size=1,
norm_type=norm_type,
initializer=XavierUniform())
self.deconv.add_sublayer('conv1', conv1)
self.deconv.add_sublayer('relu6_1', nn.ReLU6())
self.deconv.add_sublayer('conv2', conv2)
self.deconv.add_sublayer('bn', bn)
self.deconv.add_sublayer('relu6_2', nn.ReLU6())
self.deconv.add_sublayer('conv3', conv3)
self.deconv.add_sublayer('relu6_3', nn.ReLU6())
def forward(self, inputs):
return self.deconv(inputs)
class LiteUpsample(nn.Layer):
def __init__(self, ch_in, ch_out, norm_type='bn'):
super(LiteUpsample, self).__init__()
self.deconv = DeConv(ch_in, ch_out, norm_type=norm_type)
self.conv = LiteConv(ch_in, ch_out, norm_type=norm_type)
def forward(self, inputs):
deconv_up = self.deconv(inputs)
conv = self.conv(inputs)
interp_up = F.interpolate(conv, scale_factor=2., mode='bilinear')
return deconv_up + interp_up
class ShortCut(nn.Layer):
def __init__(self,
layer_num,
ch_in,
ch_out,
norm_type='bn',
lite_neck=False,
name=None):
super(ShortCut, self).__init__()
shortcut_conv = nn.Sequential()
for i in range(layer_num):
fan_out = 3 * 3 * ch_out
std = math.sqrt(2. / fan_out)
in_channels = ch_in if i == 0 else ch_out
shortcut_name = name + '.conv.{}'.format(i)
if lite_neck:
shortcut_conv.add_sublayer(
shortcut_name,
LiteConv(
in_channels=in_channels,
out_channels=ch_out,
with_act=i < layer_num - 1,
norm_type=norm_type))
else:
shortcut_conv.add_sublayer(
shortcut_name,
nn.Conv2D(
in_channels=in_channels,
out_channels=ch_out,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(initializer=Normal(0, std)),
bias_attr=ParamAttr(
learning_rate=2., regularizer=L2Decay(0.))))
if i < layer_num - 1:
shortcut_conv.add_sublayer(shortcut_name + '.act',
nn.ReLU())
self.shortcut = self.add_sublayer('shortcut', shortcut_conv)
def forward(self, feat):
out = self.shortcut(feat)
return out
@register
@serializable
class TTFFPN(nn.Layer):
"""
Args:
in_channels (list): number of input feature channels from backbone.
[128,256,512,1024] by default, means the channels of DarkNet53
backbone return_idx [1,2,3,4].
planes (list): the number of output feature channels of FPN.
[256, 128, 64] by default
shortcut_num (list): the number of convolution layers in each shortcut.
[3,2,1] by default, means DarkNet53 backbone return_idx_1 has 3 convs
in its shortcut, return_idx_2 has 2 convs and return_idx_3 has 1 conv.
norm_type (string): norm type, 'sync_bn', 'bn', 'gn' are optional.
bn by default
lite_neck (bool): whether to use lite conv in TTFNet FPN,
False by default
fusion_method (string): the method to fusion upsample and lateral layer.
'add' and 'concat' are optional, add by default
"""
__shared__ = ['norm_type']
def __init__(self,
in_channels,
planes=[256, 128, 64],
shortcut_num=[3, 2, 1],
norm_type='bn',
lite_neck=False,
fusion_method='add'):
super(TTFFPN, self).__init__()
self.planes = planes
self.shortcut_num = shortcut_num[::-1]
self.shortcut_len = len(shortcut_num)
self.ch_in = in_channels[::-1]
self.fusion_method = fusion_method
self.upsample_list = []
self.shortcut_list = []
self.upper_list = []
for i, out_c in enumerate(self.planes):
in_c = self.ch_in[i] if i == 0 else self.upper_list[-1]
upsample_module = LiteUpsample if lite_neck else Upsample
upsample = self.add_sublayer(
'upsample.' + str(i),
upsample_module(
in_c, out_c, norm_type=norm_type))
self.upsample_list.append(upsample)
if i < self.shortcut_len:
shortcut = self.add_sublayer(
'shortcut.' + str(i),
ShortCut(
self.shortcut_num[i],
self.ch_in[i + 1],
out_c,
norm_type=norm_type,
lite_neck=lite_neck,
name='shortcut.' + str(i)))
self.shortcut_list.append(shortcut)
if self.fusion_method == 'add':
upper_c = out_c
elif self.fusion_method == 'concat':
upper_c = out_c * 2
else:
raise ValueError('Illegal fusion method. Expected add or\
concat, but received {}'.format(self.fusion_method))
self.upper_list.append(upper_c)
def forward(self, inputs):
feat = inputs[-1]
for i, out_c in enumerate(self.planes):
feat = self.upsample_list[i](feat)
if i < self.shortcut_len:
shortcut = self.shortcut_list[i](inputs[-i - 2])
if self.fusion_method == 'add':
feat = feat + shortcut
else:
feat = paddle.concat([feat, shortcut], axis=1)
return feat
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape], }
@property
def out_shape(self):
return [ShapeSpec(channels=self.upper_list[-1], )]