You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

86 lines
2.5 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.nn as nn
import paddle.nn.functional as F
def normal_init(param, *args, **kwargs):
"""
Initialize parameters with a normal distribution.
Args:
param (Tensor): The tensor that needs to be initialized.
Returns:
The initialized parameters.
"""
return nn.initializer.Normal(*args, **kwargs)(param)
def kaiming_normal_init(param, *args, **kwargs):
"""
Initialize parameters with the Kaiming normal distribution.
For more information about the Kaiming initialization method, please refer to
https://arxiv.org/abs/1502.01852
Args:
param (Tensor): The tensor that needs to be initialized.
Returns:
The initialized parameters.
"""
return nn.initializer.KaimingNormal(*args, **kwargs)(param)
def constant_init(param, *args, **kwargs):
"""
Initialize parameters with constants.
Args:
param (Tensor): The tensor that needs to be initialized.
Returns:
The initialized parameters.
"""
return nn.initializer.Constant(*args, **kwargs)(param)
class KaimingInitMixin:
"""
A mix-in that provides the Kaiming initialization functionality.
Examples:
from paddlers.rs_models.cd.models.param_init import KaimingInitMixin
class CustomNet(nn.Layer, KaimingInitMixin):
def __init__(self, num_channels, num_classes):
super().__init__()
self.conv = nn.Conv2D(num_channels, num_classes, 3, 1, 0, bias_attr=False)
self.bn = nn.BatchNorm2D(num_classes)
self.init_weight()
"""
def init_weight(self):
for layer in self.sublayers():
if isinstance(layer, nn.Conv2D):
kaiming_normal_init(layer.weight)
elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)):
constant_init(layer.weight, value=1)
constant_init(layer.bias, value=0)