You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

122 lines
4.0 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import cv2
import glob
import numpy as np
from PIL import Image
from tqdm import tqdm
import paddle
from ppgan.models.generators import RRDBNet
from ppgan.utils.video import frames2video, video2frames
from ppgan.utils.download import get_path_from_url
from ppgan.utils.logger import get_logger
from .base_predictor import BasePredictor
REALSR_WEIGHT_URL = 'https://paddlegan.bj.bcebos.com/applications/DF2K_JPEG.pdparams'
class RealSRPredictor(BasePredictor):
def __init__(self, output='output', weight_path=None):
self.input = input
self.output = os.path.join(output, 'RealSR')
self.model = RRDBNet(3, 3, 64, 23)
if weight_path is None:
weight_path = get_path_from_url(REALSR_WEIGHT_URL)
state_dict = paddle.load(weight_path)
self.model.load_dict(state_dict)
self.model.eval()
def norm(self, img):
img = np.array(img).transpose([2, 0, 1]).astype('float32') / 255.0
return img.astype('float32')
def denorm(self, img):
img = img.transpose((1, 2, 0))
return (img * 255).clip(0, 255).astype('uint8')
def run_image(self, img):
if isinstance(img, str):
ori_img = Image.open(img).convert('RGB')
elif isinstance(img, np.ndarray):
ori_img = Image.fromarray(img).convert('RGB')
elif isinstance(img, Image.Image):
ori_img = img
img = self.norm(ori_img)
x = paddle.to_tensor(img[np.newaxis, ...])
with paddle.no_grad():
out = self.model(x)
pred_img = self.denorm(out.numpy()[0])
pred_img = Image.fromarray(pred_img)
return pred_img
def run_video(self, video):
base_name = os.path.basename(video).split('.')[0]
output_path = os.path.join(self.output, base_name)
pred_frame_path = os.path.join(output_path, 'frames_pred')
if not os.path.exists(output_path):
os.makedirs(output_path)
if not os.path.exists(pred_frame_path):
os.makedirs(pred_frame_path)
cap = cv2.VideoCapture(video)
fps = cap.get(cv2.CAP_PROP_FPS)
out_path = video2frames(video, output_path)
frames = sorted(glob.glob(os.path.join(out_path, '*.png')))
for frame in tqdm(frames):
pred_img = self.run_image(frame)
frame_name = os.path.basename(frame)
pred_img.save(os.path.join(pred_frame_path, frame_name))
frame_pattern_combined = os.path.join(pred_frame_path, '%08d.png')
vid_out_path = os.path.join(output_path,
'{}_realsr_out.mp4'.format(base_name))
frames2video(frame_pattern_combined, vid_out_path, str(int(fps)))
return frame_pattern_combined, vid_out_path
def run(self, input):
if not os.path.exists(self.output):
os.makedirs(self.output)
if not self.is_image(input):
return self.run_video(input)
else:
pred_img = self.run_image(input)
out_path = None
if self.output:
try:
base_name = os.path.splitext(os.path.basename(input))[0]
except:
base_name = 'result'
out_path = os.path.join(self.output, base_name + '.png')
pred_img.save(out_path)
logger = get_logger()
logger.info('Image saved to {}'.format(out_path))
return pred_img, out_path