You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
312 lines
10 KiB
312 lines
10 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import os |
|
import math |
|
import paddle |
|
from paddle import ParamAttr |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
from paddle.nn.initializer import Normal |
|
|
|
__all__ = ["ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"] |
|
|
|
|
|
class ConvBNLayer(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
num_filters, |
|
filter_size, |
|
stride=1, |
|
dilation=1, |
|
groups=1, |
|
act=None, |
|
lr_mult=1.0, |
|
name=None, |
|
data_format="NCHW"): |
|
super(ConvBNLayer, self).__init__() |
|
conv_stdv = filter_size * filter_size * num_filters |
|
self._conv = nn.Conv2D( |
|
in_channels=num_channels, |
|
out_channels=num_filters, |
|
kernel_size=filter_size, |
|
stride=stride, |
|
padding=(filter_size - 1) // 2, |
|
dilation=dilation, |
|
groups=groups, |
|
weight_attr=ParamAttr( |
|
learning_rate=lr_mult, |
|
initializer=Normal(0, math.sqrt(2. / conv_stdv))), |
|
bias_attr=False, |
|
data_format=data_format) |
|
|
|
self._batch_norm = nn.BatchNorm2D(num_filters, data_layout=data_format) |
|
self.act = act |
|
|
|
def forward(self, inputs): |
|
y = self._conv(inputs) |
|
y = self._batch_norm(y) |
|
if self.act: |
|
y = getattr(F, self.act)(y) |
|
return y |
|
|
|
|
|
class BottleneckBlock(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
num_filters, |
|
stride, |
|
shortcut=True, |
|
name=None, |
|
lr_mult=1.0, |
|
dilation=1, |
|
data_format="NCHW"): |
|
super(BottleneckBlock, self).__init__() |
|
self.conv0 = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=num_filters, |
|
filter_size=1, |
|
dilation=dilation, |
|
act="relu", |
|
lr_mult=lr_mult, |
|
name=name + "_branch2a", |
|
data_format=data_format) |
|
self.conv1 = ConvBNLayer( |
|
num_channels=num_filters, |
|
num_filters=num_filters, |
|
filter_size=3, |
|
dilation=dilation, |
|
stride=stride, |
|
act="relu", |
|
lr_mult=lr_mult, |
|
name=name + "_branch2b", |
|
data_format=data_format) |
|
self.conv2 = ConvBNLayer( |
|
num_channels=num_filters, |
|
num_filters=num_filters * 4, |
|
filter_size=1, |
|
dilation=dilation, |
|
act=None, |
|
lr_mult=lr_mult, |
|
name=name + "_branch2c", |
|
data_format=data_format) |
|
if not shortcut: |
|
self.short = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=num_filters * 4, |
|
filter_size=1, |
|
dilation=dilation, |
|
stride=stride, |
|
lr_mult=lr_mult, |
|
name=name + "_branch1", |
|
data_format=data_format) |
|
self.shortcut = shortcut |
|
self._num_channels_out = num_filters * 4 |
|
|
|
def forward(self, inputs): |
|
y = self.conv0(inputs) |
|
conv1 = self.conv1(y) |
|
conv2 = self.conv2(conv1) |
|
if self.shortcut: |
|
short = inputs |
|
else: |
|
short = self.short(inputs) |
|
y = paddle.add(x=short, y=conv2) |
|
y = F.relu(y) |
|
return y |
|
|
|
|
|
class BasicBlock(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
num_filters, |
|
stride, |
|
shortcut=True, |
|
name=None, |
|
data_format="NCHW"): |
|
super(BasicBlock, self).__init__() |
|
self.stride = stride |
|
self.conv0 = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=num_filters, |
|
filter_size=3, |
|
stride=stride, |
|
act="relu", |
|
name=name + "_branch2a", |
|
data_format=data_format) |
|
self.conv1 = ConvBNLayer( |
|
num_channels=num_filters, |
|
num_filters=num_filters, |
|
filter_size=3, |
|
act=None, |
|
name=name + "_branch2b", |
|
data_format=data_format) |
|
if not shortcut: |
|
self.short = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=num_filters, |
|
filter_size=1, |
|
stride=stride, |
|
name=name + "_branch1", |
|
data_format=data_format) |
|
self.shortcut = shortcut |
|
|
|
def forward(self, inputs): |
|
y = self.conv0(inputs) |
|
conv1 = self.conv1(y) |
|
if self.shortcut: |
|
short = inputs |
|
else: |
|
short = self.short(inputs) |
|
y = paddle.add(x=short, y=conv1) |
|
y = F.relu(y) |
|
return y |
|
|
|
|
|
class ResNet(nn.Layer): |
|
def __init__(self, |
|
layers=50, |
|
lr_mult=1.0, |
|
last_conv_stride=2, |
|
last_conv_dilation=1): |
|
super(ResNet, self).__init__() |
|
self.layers = layers |
|
self.data_format = "NCHW" |
|
self.input_image_channel = 3 |
|
supported_layers = [18, 34, 50, 101, 152] |
|
assert layers in supported_layers, \ |
|
"supported layers are {} but input layer is {}".format( |
|
supported_layers, layers) |
|
if layers == 18: |
|
depth = [2, 2, 2, 2] |
|
elif layers == 34 or layers == 50: |
|
depth = [3, 4, 6, 3] |
|
elif layers == 101: |
|
depth = [3, 4, 23, 3] |
|
elif layers == 152: |
|
depth = [3, 8, 36, 3] |
|
num_channels = [64, 256, 512, |
|
1024] if layers >= 50 else [64, 64, 128, 256] |
|
num_filters = [64, 128, 256, 512] |
|
self.conv = ConvBNLayer( |
|
num_channels=self.input_image_channel, |
|
num_filters=64, |
|
filter_size=7, |
|
stride=2, |
|
act="relu", |
|
lr_mult=lr_mult, |
|
name="conv1", |
|
data_format=self.data_format) |
|
self.pool2d_max = nn.MaxPool2D( |
|
kernel_size=3, stride=2, padding=1, data_format=self.data_format) |
|
self.block_list = [] |
|
if layers >= 50: |
|
for block in range(len(depth)): |
|
shortcut = False |
|
for i in range(depth[block]): |
|
if layers in [101, 152] and block == 2: |
|
if i == 0: |
|
conv_name = "res" + str(block + 2) + "a" |
|
else: |
|
conv_name = "res" + str(block + 2) + "b" + str(i) |
|
else: |
|
conv_name = "res" + str(block + 2) + chr(97 + i) |
|
if i != 0 or block == 0: |
|
stride = 1 |
|
elif block == len(depth) - 1: |
|
stride = last_conv_stride |
|
else: |
|
stride = 2 |
|
bottleneck_block = self.add_sublayer( |
|
conv_name, |
|
BottleneckBlock( |
|
num_channels=num_channels[block] |
|
if i == 0 else num_filters[block] * 4, |
|
num_filters=num_filters[block], |
|
stride=stride, |
|
shortcut=shortcut, |
|
name=conv_name, |
|
lr_mult=lr_mult, |
|
dilation=last_conv_dilation |
|
if block == len(depth) - 1 else 1, |
|
data_format=self.data_format)) |
|
self.block_list.append(bottleneck_block) |
|
shortcut = True |
|
else: |
|
for block in range(len(depth)): |
|
shortcut = False |
|
for i in range(depth[block]): |
|
conv_name = "res" + str(block + 2) + chr(97 + i) |
|
basic_block = self.add_sublayer( |
|
conv_name, |
|
BasicBlock( |
|
num_channels=num_channels[block] |
|
if i == 0 else num_filters[block], |
|
num_filters=num_filters[block], |
|
stride=2 if i == 0 and block != 0 else 1, |
|
shortcut=shortcut, |
|
name=conv_name, |
|
data_format=self.data_format)) |
|
self.block_list.append(basic_block) |
|
shortcut = True |
|
|
|
def forward(self, inputs): |
|
y = self.conv(inputs) |
|
y = self.pool2d_max(y) |
|
for block in self.block_list: |
|
y = block(y) |
|
return y |
|
|
|
|
|
def ResNet18(**args): |
|
model = ResNet(layers=18, **args) |
|
return model |
|
|
|
|
|
def ResNet34(**args): |
|
model = ResNet(layers=34, **args) |
|
return model |
|
|
|
|
|
def ResNet50(pretrained=None, **args): |
|
model = ResNet(layers=50, **args) |
|
if pretrained is not None: |
|
if not (os.path.isdir(pretrained) or |
|
os.path.exists(pretrained + '.pdparams')): |
|
raise ValueError("Model pretrain path {} does not " |
|
"exists.".format(pretrained)) |
|
param_state_dict = paddle.load(pretrained + '.pdparams') |
|
model.set_dict(param_state_dict) |
|
return model |
|
|
|
|
|
def ResNet101(pretrained=None, **args): |
|
model = ResNet(layers=101, **args) |
|
if pretrained is not None: |
|
if not (os.path.isdir(pretrained) or |
|
os.path.exists(pretrained + '.pdparams')): |
|
raise ValueError("Model pretrain path {} does not " |
|
"exists.".format(pretrained)) |
|
param_state_dict = paddle.load(pretrained + '.pdparams') |
|
model.set_dict(param_state_dict) |
|
return model |
|
|
|
|
|
def ResNet152(**args): |
|
model = ResNet(layers=152, **args) |
|
return model
|
|
|