You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
144 lines
5.5 KiB
144 lines
5.5 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
from paddle.nn.initializer import Normal, Constant |
|
from paddle import ParamAttr |
|
from .resnet import * |
|
from paddlers.models.ppdet.core.workspace import register |
|
|
|
__all__ = ['PCBPyramid'] |
|
|
|
|
|
@register |
|
class PCBPyramid(nn.Layer): |
|
""" |
|
PCB (Part-based Convolutional Baseline), see https://arxiv.org/abs/1711.09349, |
|
Pyramidal Person Re-IDentification, see https://arxiv.org/abs/1810.12193 |
|
|
|
Args: |
|
input_ch (int): Number of channels of the input feature. |
|
num_stripes (int): Number of sub-parts. |
|
used_levels (tuple): Whether the level is used, 1 means used. |
|
num_classes (int): Number of classes for identities, default 751 in |
|
Market-1501 dataset. |
|
last_conv_stride (int): Stride of the last conv. |
|
last_conv_dilation (int): Dilation of the last conv. |
|
num_conv_out_channels (int): Number of channels of conv feature. |
|
""" |
|
|
|
def __init__(self, |
|
input_ch=2048, |
|
num_stripes=6, |
|
used_levels=(1, 1, 1, 1, 1, 1), |
|
num_classes=751, |
|
last_conv_stride=1, |
|
last_conv_dilation=1, |
|
num_conv_out_channels=128): |
|
super(PCBPyramid, self).__init__() |
|
self.num_stripes = num_stripes |
|
self.used_levels = used_levels |
|
self.num_classes = num_classes |
|
|
|
self.num_in_each_level = [i for i in range(self.num_stripes, 0, -1)] |
|
self.num_branches = sum(self.num_in_each_level) |
|
|
|
self.base = ResNet101( |
|
lr_mult=0.1, |
|
last_conv_stride=last_conv_stride, |
|
last_conv_dilation=last_conv_dilation) |
|
self.dropout_layer = nn.Dropout(p=0.2) |
|
self.pyramid_conv_list0, self.pyramid_fc_list0 = self.basic_branch( |
|
num_conv_out_channels, input_ch) |
|
|
|
def basic_branch(self, num_conv_out_channels, input_ch): |
|
# the level indexes are defined from fine to coarse, |
|
# the branch will contain one more part than that of its previous level |
|
# the sliding step is set to 1 |
|
pyramid_conv_list = nn.LayerList() |
|
pyramid_fc_list = nn.LayerList() |
|
|
|
idx_levels = 0 |
|
for idx_branches in range(self.num_branches): |
|
if idx_branches >= sum(self.num_in_each_level[0:idx_levels + 1]): |
|
idx_levels += 1 |
|
|
|
pyramid_conv_list.append( |
|
nn.Sequential( |
|
nn.Conv2D(input_ch, num_conv_out_channels, 1), |
|
nn.BatchNorm2D(num_conv_out_channels), nn.ReLU())) |
|
|
|
idx_levels = 0 |
|
for idx_branches in range(self.num_branches): |
|
if idx_branches >= sum(self.num_in_each_level[0:idx_levels + 1]): |
|
idx_levels += 1 |
|
|
|
fc = nn.Linear( |
|
in_features=num_conv_out_channels, |
|
out_features=self.num_classes, |
|
weight_attr=ParamAttr(initializer=Normal( |
|
mean=0., std=0.001)), |
|
bias_attr=ParamAttr(initializer=Constant(value=0.))) |
|
pyramid_fc_list.append(fc) |
|
return pyramid_conv_list, pyramid_fc_list |
|
|
|
def pyramid_forward(self, feat): |
|
each_stripe_size = int(feat.shape[2] / self.num_stripes) |
|
|
|
feat_list, logits_list = [], [] |
|
idx_levels = 0 |
|
used_branches = 0 |
|
for idx_branches in range(self.num_branches): |
|
if idx_branches >= sum(self.num_in_each_level[0:idx_levels + 1]): |
|
idx_levels += 1 |
|
idx_in_each_level = idx_branches - sum(self.num_in_each_level[ |
|
0:idx_levels]) |
|
stripe_size_in_each_level = each_stripe_size * (idx_levels + 1) |
|
start = idx_in_each_level * each_stripe_size |
|
end = start + stripe_size_in_each_level |
|
|
|
k = feat.shape[-1] |
|
local_feat_avgpool = F.avg_pool2d( |
|
feat[:, :, start:end, :], |
|
kernel_size=(stripe_size_in_each_level, k)) |
|
local_feat_maxpool = F.max_pool2d( |
|
feat[:, :, start:end, :], |
|
kernel_size=(stripe_size_in_each_level, k)) |
|
local_feat = local_feat_avgpool + local_feat_maxpool |
|
|
|
local_feat = self.pyramid_conv_list0[used_branches](local_feat) |
|
local_feat = paddle.reshape( |
|
local_feat, shape=[local_feat.shape[0], -1]) |
|
feat_list.append(local_feat) |
|
|
|
local_logits = self.pyramid_fc_list0[used_branches]( |
|
self.dropout_layer(local_feat)) |
|
logits_list.append(local_logits) |
|
|
|
used_branches += 1 |
|
|
|
return feat_list, logits_list |
|
|
|
def forward(self, x): |
|
feat = self.base(x) |
|
assert feat.shape[2] % self.num_stripes == 0 |
|
feat_list, logits_list = self.pyramid_forward(feat) |
|
feat_out = paddle.concat(feat_list, axis=-1) |
|
return feat_out
|
|
|