You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
281 lines
8.6 KiB
281 lines
8.6 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
import paddle.nn.functional as F |
|
from paddle.nn.initializer import Normal, Constant |
|
from paddle import ParamAttr |
|
from paddle.nn import AdaptiveAvgPool2D, BatchNorm2D, Conv2D, Linear |
|
from paddle.regularizer import L2Decay |
|
from paddle.nn.initializer import KaimingNormal, XavierNormal |
|
from paddlers.models.ppdet.core.workspace import register |
|
|
|
__all__ = ['PPLCNetEmbedding'] |
|
|
|
# Each element(list) represents a depthwise block, which is composed of k, in_c, out_c, s, use_se. |
|
# k: kernel_size |
|
# in_c: input channel number in depthwise block |
|
# out_c: output channel number in depthwise block |
|
# s: stride in depthwise block |
|
# use_se: whether to use SE block |
|
|
|
NET_CONFIG = { |
|
"blocks2": |
|
#k, in_c, out_c, s, use_se |
|
[[3, 16, 32, 1, False]], |
|
"blocks3": [[3, 32, 64, 2, False], [3, 64, 64, 1, False]], |
|
"blocks4": [[3, 64, 128, 2, False], [3, 128, 128, 1, False]], |
|
"blocks5": |
|
[[3, 128, 256, 2, False], [5, 256, 256, 1, False], [5, 256, 256, 1, False], |
|
[5, 256, 256, 1, False], [5, 256, 256, 1, False], [5, 256, 256, 1, False]], |
|
"blocks6": [[5, 256, 512, 2, True], [5, 512, 512, 1, True]] |
|
} |
|
|
|
|
|
def make_divisible(v, divisor=8, min_value=None): |
|
if min_value is None: |
|
min_value = divisor |
|
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) |
|
if new_v < 0.9 * v: |
|
new_v += divisor |
|
return new_v |
|
|
|
|
|
class ConvBNLayer(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
filter_size, |
|
num_filters, |
|
stride, |
|
num_groups=1): |
|
super().__init__() |
|
|
|
self.conv = Conv2D( |
|
in_channels=num_channels, |
|
out_channels=num_filters, |
|
kernel_size=filter_size, |
|
stride=stride, |
|
padding=(filter_size - 1) // 2, |
|
groups=num_groups, |
|
weight_attr=ParamAttr(initializer=KaimingNormal()), |
|
bias_attr=False) |
|
|
|
self.bn = BatchNorm2D( |
|
num_filters, |
|
weight_attr=ParamAttr(regularizer=L2Decay(0.0)), |
|
bias_attr=ParamAttr(regularizer=L2Decay(0.0))) |
|
self.hardswish = nn.Hardswish() |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
x = self.hardswish(x) |
|
return x |
|
|
|
|
|
class DepthwiseSeparable(nn.Layer): |
|
def __init__(self, |
|
num_channels, |
|
num_filters, |
|
stride, |
|
dw_size=3, |
|
use_se=False): |
|
super().__init__() |
|
self.use_se = use_se |
|
self.dw_conv = ConvBNLayer( |
|
num_channels=num_channels, |
|
num_filters=num_channels, |
|
filter_size=dw_size, |
|
stride=stride, |
|
num_groups=num_channels) |
|
if use_se: |
|
self.se = SEModule(num_channels) |
|
self.pw_conv = ConvBNLayer( |
|
num_channels=num_channels, |
|
filter_size=1, |
|
num_filters=num_filters, |
|
stride=1) |
|
|
|
def forward(self, x): |
|
x = self.dw_conv(x) |
|
if self.use_se: |
|
x = self.se(x) |
|
x = self.pw_conv(x) |
|
return x |
|
|
|
|
|
class SEModule(nn.Layer): |
|
def __init__(self, channel, reduction=4): |
|
super().__init__() |
|
self.avg_pool = AdaptiveAvgPool2D(1) |
|
self.conv1 = Conv2D( |
|
in_channels=channel, |
|
out_channels=channel // reduction, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.relu = nn.ReLU() |
|
self.conv2 = Conv2D( |
|
in_channels=channel // reduction, |
|
out_channels=channel, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.hardsigmoid = nn.Hardsigmoid() |
|
|
|
def forward(self, x): |
|
identity = x |
|
x = self.avg_pool(x) |
|
x = self.conv1(x) |
|
x = self.relu(x) |
|
x = self.conv2(x) |
|
x = self.hardsigmoid(x) |
|
x = paddle.multiply(x=identity, y=x) |
|
return x |
|
|
|
|
|
class PPLCNet(nn.Layer): |
|
""" |
|
PP-LCNet, see https://arxiv.org/abs/2109.15099. |
|
This code is different from PPLCNet in ppdet/modeling/backbones/lcnet.py |
|
or in PaddleClas, because the output is the flatten feature of last_conv. |
|
|
|
Args: |
|
scale (float): Scale ratio of channels. |
|
class_expand (int): Number of channels of conv feature. |
|
""" |
|
|
|
def __init__(self, scale=1.0, class_expand=1280): |
|
super(PPLCNet, self).__init__() |
|
self.scale = scale |
|
self.class_expand = class_expand |
|
|
|
self.conv1 = ConvBNLayer( |
|
num_channels=3, |
|
filter_size=3, |
|
num_filters=make_divisible(16 * scale), |
|
stride=2) |
|
|
|
self.blocks2 = nn.Sequential(*[ |
|
DepthwiseSeparable( |
|
num_channels=make_divisible(in_c * scale), |
|
num_filters=make_divisible(out_c * scale), |
|
dw_size=k, |
|
stride=s, |
|
use_se=se) |
|
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks2"]) |
|
]) |
|
|
|
self.blocks3 = nn.Sequential(*[ |
|
DepthwiseSeparable( |
|
num_channels=make_divisible(in_c * scale), |
|
num_filters=make_divisible(out_c * scale), |
|
dw_size=k, |
|
stride=s, |
|
use_se=se) |
|
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks3"]) |
|
]) |
|
|
|
self.blocks4 = nn.Sequential(*[ |
|
DepthwiseSeparable( |
|
num_channels=make_divisible(in_c * scale), |
|
num_filters=make_divisible(out_c * scale), |
|
dw_size=k, |
|
stride=s, |
|
use_se=se) |
|
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks4"]) |
|
]) |
|
|
|
self.blocks5 = nn.Sequential(*[ |
|
DepthwiseSeparable( |
|
num_channels=make_divisible(in_c * scale), |
|
num_filters=make_divisible(out_c * scale), |
|
dw_size=k, |
|
stride=s, |
|
use_se=se) |
|
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks5"]) |
|
]) |
|
|
|
self.blocks6 = nn.Sequential(*[ |
|
DepthwiseSeparable( |
|
num_channels=make_divisible(in_c * scale), |
|
num_filters=make_divisible(out_c * scale), |
|
dw_size=k, |
|
stride=s, |
|
use_se=se) |
|
for i, (k, in_c, out_c, s, se) in enumerate(NET_CONFIG["blocks6"]) |
|
]) |
|
|
|
self.avg_pool = AdaptiveAvgPool2D(1) |
|
self.last_conv = Conv2D( |
|
in_channels=make_divisible(NET_CONFIG["blocks6"][-1][2] * scale), |
|
out_channels=self.class_expand, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias_attr=False) |
|
self.hardswish = nn.Hardswish() |
|
self.flatten = nn.Flatten(start_axis=1, stop_axis=-1) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
|
|
x = self.blocks2(x) |
|
x = self.blocks3(x) |
|
x = self.blocks4(x) |
|
x = self.blocks5(x) |
|
x = self.blocks6(x) |
|
|
|
x = self.avg_pool(x) |
|
x = self.last_conv(x) |
|
x = self.hardswish(x) |
|
x = self.flatten(x) |
|
return x |
|
|
|
|
|
class FC(nn.Layer): |
|
def __init__(self, input_ch, output_ch): |
|
super(FC, self).__init__() |
|
weight_attr = ParamAttr(initializer=XavierNormal()) |
|
self.fc = paddle.nn.Linear(input_ch, output_ch, weight_attr=weight_attr) |
|
|
|
def forward(self, x): |
|
out = self.fc(x) |
|
return out |
|
|
|
|
|
@register |
|
class PPLCNetEmbedding(nn.Layer): |
|
""" |
|
PPLCNet Embedding |
|
|
|
Args: |
|
input_ch (int): Number of channels of input conv feature. |
|
output_ch (int): Number of channels of output conv feature. |
|
""" |
|
|
|
def __init__(self, scale=2.5, input_ch=1280, output_ch=512): |
|
super(PPLCNetEmbedding, self).__init__() |
|
self.backbone = PPLCNet(scale=scale) |
|
self.neck = FC(input_ch, output_ch) |
|
|
|
def forward(self, x): |
|
feat = self.backbone(x) |
|
feat_out = self.neck(feat) |
|
return feat_out
|
|
|