You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1604 lines
70 KiB
1604 lines
70 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import paddle |
|
import paddle.nn.functional as F |
|
import paddle.nn as nn |
|
from paddle import ParamAttr |
|
from paddle.regularizer import L2Decay |
|
|
|
from paddle.fluid.framework import Variable, in_dygraph_mode |
|
from paddle.fluid import core |
|
from paddle.fluid.layer_helper import LayerHelper |
|
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype |
|
|
|
__all__ = [ |
|
'roi_pool', |
|
'roi_align', |
|
'prior_box', |
|
'generate_proposals', |
|
'iou_similarity', |
|
'box_coder', |
|
'yolo_box', |
|
'multiclass_nms', |
|
'distribute_fpn_proposals', |
|
'collect_fpn_proposals', |
|
'matrix_nms', |
|
'batch_norm', |
|
'mish', |
|
] |
|
|
|
|
|
def mish(x): |
|
return x * paddle.tanh(F.softplus(x)) |
|
|
|
|
|
def batch_norm(ch, |
|
norm_type='bn', |
|
norm_decay=0., |
|
freeze_norm=False, |
|
initializer=None, |
|
data_format='NCHW'): |
|
|
|
norm_lr = 0. if freeze_norm else 1. |
|
weight_attr = ParamAttr( |
|
initializer=initializer, |
|
learning_rate=norm_lr, |
|
regularizer=L2Decay(norm_decay), |
|
trainable=False if freeze_norm else True) |
|
bias_attr = ParamAttr( |
|
learning_rate=norm_lr, |
|
regularizer=L2Decay(norm_decay), |
|
trainable=False if freeze_norm else True) |
|
|
|
if norm_type in ['sync_bn', 'bn']: |
|
norm_layer = nn.BatchNorm2D( |
|
ch, |
|
weight_attr=weight_attr, |
|
bias_attr=bias_attr, |
|
data_format=data_format) |
|
|
|
norm_params = norm_layer.parameters() |
|
if freeze_norm: |
|
for param in norm_params: |
|
param.stop_gradient = True |
|
|
|
return norm_layer |
|
|
|
|
|
@paddle.jit.not_to_static |
|
def roi_pool(input, |
|
rois, |
|
output_size, |
|
spatial_scale=1.0, |
|
rois_num=None, |
|
name=None): |
|
""" |
|
|
|
This operator implements the roi_pooling layer. |
|
Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7). |
|
|
|
The operator has three steps: |
|
|
|
1. Dividing each region proposal into equal-sized sections with output_size(h, w); |
|
2. Finding the largest value in each section; |
|
3. Copying these max values to the output buffer. |
|
|
|
For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn |
|
|
|
Args: |
|
input (Tensor): Input feature, 4D-Tensor with the shape of [N,C,H,W], |
|
where N is the batch size, C is the input channel, H is Height, W is weight. |
|
The data type is float32 or float64. |
|
rois (Tensor): ROIs (Regions of Interest) to pool over. |
|
2D-Tensor or 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1. |
|
Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, |
|
and (x2, y2) is the bottom right coordinates. |
|
output_size (int or tuple[int, int]): The pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size. |
|
spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0 |
|
rois_num (Tensor): The number of RoIs in each image. Default: None |
|
name(str, optional): For detailed information, please refer |
|
to :ref:`api_guide_Name`. Usually name is no need to set and |
|
None by default. |
|
|
|
|
|
Returns: |
|
Tensor: The pooled feature, 4D-Tensor with the shape of [num_rois, C, output_size[0], output_size[1]]. |
|
|
|
|
|
Examples: |
|
|
|
.. code-block:: python |
|
|
|
import paddle |
|
from paddlers.models.ppdet.modeling import ops |
|
paddle.enable_static() |
|
|
|
x = paddle.static.data( |
|
name='data', shape=[None, 256, 32, 32], dtype='float32') |
|
rois = paddle.static.data( |
|
name='rois', shape=[None, 4], dtype='float32') |
|
rois_num = paddle.static.data(name='rois_num', shape=[None], dtype='int32') |
|
|
|
pool_out = ops.roi_pool( |
|
input=x, |
|
rois=rois, |
|
output_size=(1, 1), |
|
spatial_scale=1.0, |
|
rois_num=rois_num) |
|
""" |
|
check_type(output_size, 'output_size', (int, tuple), 'roi_pool') |
|
if isinstance(output_size, int): |
|
output_size = (output_size, output_size) |
|
|
|
pooled_height, pooled_width = output_size |
|
if in_dygraph_mode(): |
|
assert rois_num is not None, "rois_num should not be None in dygraph mode." |
|
pool_out, argmaxes = core.ops.roi_pool( |
|
input, rois, rois_num, "pooled_height", pooled_height, |
|
"pooled_width", pooled_width, "spatial_scale", spatial_scale) |
|
return pool_out, argmaxes |
|
|
|
else: |
|
check_variable_and_dtype(input, 'input', ['float32'], 'roi_pool') |
|
check_variable_and_dtype(rois, 'rois', ['float32'], 'roi_pool') |
|
helper = LayerHelper('roi_pool', **locals()) |
|
dtype = helper.input_dtype() |
|
pool_out = helper.create_variable_for_type_inference(dtype) |
|
argmaxes = helper.create_variable_for_type_inference(dtype='int32') |
|
|
|
inputs = { |
|
"X": input, |
|
"ROIs": rois, |
|
} |
|
if rois_num is not None: |
|
inputs['RoisNum'] = rois_num |
|
helper.append_op( |
|
type="roi_pool", |
|
inputs=inputs, |
|
outputs={"Out": pool_out, |
|
"Argmax": argmaxes}, |
|
attrs={ |
|
"pooled_height": pooled_height, |
|
"pooled_width": pooled_width, |
|
"spatial_scale": spatial_scale |
|
}) |
|
return pool_out, argmaxes |
|
|
|
|
|
@paddle.jit.not_to_static |
|
def roi_align(input, |
|
rois, |
|
output_size, |
|
spatial_scale=1.0, |
|
sampling_ratio=-1, |
|
rois_num=None, |
|
aligned=True, |
|
name=None): |
|
""" |
|
|
|
Region of interest align (also known as RoI align) is to perform |
|
bilinear interpolation on inputs of nonuniform sizes to obtain |
|
fixed-size feature maps (e.g. 7*7) |
|
|
|
Dividing each region proposal into equal-sized sections with |
|
the pooled_width and pooled_height. Location remains the origin |
|
result. |
|
|
|
In each ROI bin, the value of the four regularly sampled locations |
|
are computed directly through bilinear interpolation. The output is |
|
the mean of four locations. |
|
Thus avoid the misaligned problem. |
|
|
|
Args: |
|
input (Tensor): Input feature, 4D-Tensor with the shape of [N,C,H,W], |
|
where N is the batch size, C is the input channel, H is Height, W is weight. |
|
The data type is float32 or float64. |
|
rois (Tensor): ROIs (Regions of Interest) to pool over.It should be |
|
a 2-D Tensor or 2-D LoDTensor of shape (num_rois, 4), the lod level is 1. |
|
The data type is float32 or float64. Given as [[x1, y1, x2, y2], ...], |
|
(x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates. |
|
output_size (int or tuple[int, int]): The pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size. |
|
spatial_scale (float32, optional): Multiplicative spatial scale factor to translate ROI coords |
|
from their input scale to the scale used when pooling. Default: 1.0 |
|
sampling_ratio(int32, optional): number of sampling points in the interpolation grid. |
|
If <=0, then grid points are adaptive to roi_width and pooled_w, likewise for height. Default: -1 |
|
rois_num (Tensor): The number of RoIs in each image. Default: None |
|
name(str, optional): For detailed information, please refer |
|
to :ref:`api_guide_Name`. Usually name is no need to set and |
|
None by default. |
|
|
|
Returns: |
|
Tensor: |
|
|
|
Output: The output of ROIAlignOp is a 4-D tensor with shape (num_rois, channels, pooled_h, pooled_w). The data type is float32 or float64. |
|
|
|
|
|
Examples: |
|
.. code-block:: python |
|
|
|
import paddle |
|
from paddlers.models.ppdet.modeling import ops |
|
paddle.enable_static() |
|
|
|
x = paddle.static.data( |
|
name='data', shape=[None, 256, 32, 32], dtype='float32') |
|
rois = paddle.static.data( |
|
name='rois', shape=[None, 4], dtype='float32') |
|
rois_num = paddle.static.data(name='rois_num', shape=[None], dtype='int32') |
|
align_out = ops.roi_align(input=x, |
|
rois=rois, |
|
ouput_size=(7, 7), |
|
spatial_scale=0.5, |
|
sampling_ratio=-1, |
|
rois_num=rois_num) |
|
""" |
|
check_type(output_size, 'output_size', (int, tuple), 'roi_align') |
|
if isinstance(output_size, int): |
|
output_size = (output_size, output_size) |
|
|
|
pooled_height, pooled_width = output_size |
|
|
|
if in_dygraph_mode(): |
|
assert rois_num is not None, "rois_num should not be None in dygraph mode." |
|
align_out = core.ops.roi_align( |
|
input, rois, rois_num, "pooled_height", pooled_height, |
|
"pooled_width", pooled_width, "spatial_scale", spatial_scale, |
|
"sampling_ratio", sampling_ratio, "aligned", aligned) |
|
return align_out |
|
|
|
else: |
|
check_variable_and_dtype(input, 'input', ['float32', 'float64'], |
|
'roi_align') |
|
check_variable_and_dtype(rois, 'rois', ['float32', 'float64'], |
|
'roi_align') |
|
helper = LayerHelper('roi_align', **locals()) |
|
dtype = helper.input_dtype() |
|
align_out = helper.create_variable_for_type_inference(dtype) |
|
inputs = { |
|
"X": input, |
|
"ROIs": rois, |
|
} |
|
if rois_num is not None: |
|
inputs['RoisNum'] = rois_num |
|
helper.append_op( |
|
type="roi_align", |
|
inputs=inputs, |
|
outputs={"Out": align_out}, |
|
attrs={ |
|
"pooled_height": pooled_height, |
|
"pooled_width": pooled_width, |
|
"spatial_scale": spatial_scale, |
|
"sampling_ratio": sampling_ratio, |
|
"aligned": aligned, |
|
}) |
|
return align_out |
|
|
|
|
|
@paddle.jit.not_to_static |
|
def iou_similarity(x, y, box_normalized=True, name=None): |
|
""" |
|
Computes intersection-over-union (IOU) between two box lists. |
|
Box list 'X' should be a LoDTensor and 'Y' is a common Tensor, |
|
boxes in 'Y' are shared by all instance of the batched inputs of X. |
|
Given two boxes A and B, the calculation of IOU is as follows: |
|
|
|
$$ |
|
IOU(A, B) = |
|
\\frac{area(A\\cap B)}{area(A)+area(B)-area(A\\cap B)} |
|
$$ |
|
|
|
Args: |
|
x (Tensor): Box list X is a 2-D Tensor with shape [N, 4] holds N |
|
boxes, each box is represented as [xmin, ymin, xmax, ymax], |
|
the shape of X is [N, 4]. [xmin, ymin] is the left top |
|
coordinate of the box if the input is image feature map, they |
|
are close to the origin of the coordinate system. |
|
[xmax, ymax] is the right bottom coordinate of the box. |
|
The data type is float32 or float64. |
|
y (Tensor): Box list Y holds M boxes, each box is represented as |
|
[xmin, ymin, xmax, ymax], the shape of X is [N, 4]. |
|
[xmin, ymin] is the left top coordinate of the box if the |
|
input is image feature map, and [xmax, ymax] is the right |
|
bottom coordinate of the box. The data type is float32 or float64. |
|
box_normalized(bool): Whether treat the priorbox as a normalized box. |
|
Set true by default. |
|
name(str, optional): For detailed information, please refer |
|
to :ref:`api_guide_Name`. Usually name is no need to set and |
|
None by default. |
|
|
|
Returns: |
|
Tensor: The output of iou_similarity op, a tensor with shape [N, M] |
|
representing pairwise iou scores. The data type is same with x. |
|
|
|
Examples: |
|
.. code-block:: python |
|
|
|
import paddle |
|
from paddlers.models.ppdet.modeling import ops |
|
paddle.enable_static() |
|
|
|
x = paddle.static.data(name='x', shape=[None, 4], dtype='float32') |
|
y = paddle.static.data(name='y', shape=[None, 4], dtype='float32') |
|
iou = ops.iou_similarity(x=x, y=y) |
|
""" |
|
|
|
if in_dygraph_mode(): |
|
out = core.ops.iou_similarity(x, y, 'box_normalized', box_normalized) |
|
return out |
|
else: |
|
helper = LayerHelper("iou_similarity", **locals()) |
|
out = helper.create_variable_for_type_inference(dtype=x.dtype) |
|
|
|
helper.append_op( |
|
type="iou_similarity", |
|
inputs={"X": x, |
|
"Y": y}, |
|
attrs={"box_normalized": box_normalized}, |
|
outputs={"Out": out}) |
|
return out |
|
|
|
|
|
@paddle.jit.not_to_static |
|
def collect_fpn_proposals(multi_rois, |
|
multi_scores, |
|
min_level, |
|
max_level, |
|
post_nms_top_n, |
|
rois_num_per_level=None, |
|
name=None): |
|
""" |
|
|
|
**This OP only supports LoDTensor as input**. Concat multi-level RoIs |
|
(Region of Interest) and select N RoIs with respect to multi_scores. |
|
This operation performs the following steps: |
|
|
|
1. Choose num_level RoIs and scores as input: num_level = max_level - min_level |
|
2. Concat multi-level RoIs and scores |
|
3. Sort scores and select post_nms_top_n scores |
|
4. Gather RoIs by selected indices from scores |
|
5. Re-sort RoIs by corresponding batch_id |
|
|
|
Args: |
|
multi_rois(list): List of RoIs to collect. Element in list is 2-D |
|
LoDTensor with shape [N, 4] and data type is float32 or float64, |
|
N is the number of RoIs. |
|
multi_scores(list): List of scores of RoIs to collect. Element in list |
|
is 2-D LoDTensor with shape [N, 1] and data type is float32 or |
|
float64, N is the number of RoIs. |
|
min_level(int): The lowest level of FPN layer to collect |
|
max_level(int): The highest level of FPN layer to collect |
|
post_nms_top_n(int): The number of selected RoIs |
|
rois_num_per_level(list, optional): The List of RoIs' numbers. |
|
Each element is 1-D Tensor which contains the RoIs' number of each |
|
image on each level and the shape is [B] and data type is |
|
int32, B is the number of images. If it is not None then return |
|
a 1-D Tensor contains the output RoIs' number of each image and |
|
the shape is [B]. Default: None |
|
name(str, optional): For detailed information, please refer |
|
to :ref:`api_guide_Name`. Usually name is no need to set and |
|
None by default. |
|
|
|
Returns: |
|
Variable: |
|
|
|
fpn_rois(Variable): 2-D LoDTensor with shape [N, 4] and data type is |
|
float32 or float64. Selected RoIs. |
|
|
|
rois_num(Tensor): 1-D Tensor contains the RoIs's number of each |
|
image. The shape is [B] and data type is int32. B is the number of |
|
images. |
|
|
|
Examples: |
|
.. code-block:: python |
|
|
|
import paddle |
|
from paddlers.models.ppdet.modeling import ops |
|
paddle.enable_static() |
|
multi_rois = [] |
|
multi_scores = [] |
|
for i in range(4): |
|
multi_rois.append(paddle.static.data( |
|
name='roi_'+str(i), shape=[None, 4], dtype='float32', lod_level=1)) |
|
for i in range(4): |
|
multi_scores.append(paddle.static.data( |
|
name='score_'+str(i), shape=[None, 1], dtype='float32', lod_level=1)) |
|
|
|
fpn_rois = ops.collect_fpn_proposals( |
|
multi_rois=multi_rois, |
|
multi_scores=multi_scores, |
|
min_level=2, |
|
max_level=5, |
|
post_nms_top_n=2000) |
|
""" |
|
check_type(multi_rois, 'multi_rois', list, 'collect_fpn_proposals') |
|
check_type(multi_scores, 'multi_scores', list, 'collect_fpn_proposals') |
|
num_lvl = max_level - min_level + 1 |
|
input_rois = multi_rois[:num_lvl] |
|
input_scores = multi_scores[:num_lvl] |
|
|
|
if in_dygraph_mode(): |
|
assert rois_num_per_level is not None, "rois_num_per_level should not be None in dygraph mode." |
|
attrs = ('post_nms_topN', post_nms_top_n) |
|
output_rois, rois_num = core.ops.collect_fpn_proposals( |
|
input_rois, input_scores, rois_num_per_level, *attrs) |
|
return output_rois, rois_num |
|
|
|
else: |
|
helper = LayerHelper('collect_fpn_proposals', **locals()) |
|
dtype = helper.input_dtype('multi_rois') |
|
check_dtype(dtype, 'multi_rois', ['float32', 'float64'], |
|
'collect_fpn_proposals') |
|
output_rois = helper.create_variable_for_type_inference(dtype) |
|
output_rois.stop_gradient = True |
|
|
|
inputs = { |
|
'MultiLevelRois': input_rois, |
|
'MultiLevelScores': input_scores, |
|
} |
|
outputs = {'FpnRois': output_rois} |
|
if rois_num_per_level is not None: |
|
inputs['MultiLevelRoIsNum'] = rois_num_per_level |
|
rois_num = helper.create_variable_for_type_inference(dtype='int32') |
|
rois_num.stop_gradient = True |
|
outputs['RoisNum'] = rois_num |
|
helper.append_op( |
|
type='collect_fpn_proposals', |
|
inputs=inputs, |
|
outputs=outputs, |
|
attrs={'post_nms_topN': post_nms_top_n}) |
|
return output_rois, rois_num |
|
|
|
|
|
@paddle.jit.not_to_static |
|
def distribute_fpn_proposals(fpn_rois, |
|
min_level, |
|
max_level, |
|
refer_level, |
|
refer_scale, |
|
pixel_offset=False, |
|
rois_num=None, |
|
name=None): |
|
r""" |
|
|
|
**This op only takes LoDTensor as input.** In Feature Pyramid Networks |
|
(FPN) models, it is needed to distribute all proposals into different FPN |
|
level, with respect to scale of the proposals, the referring scale and the |
|
referring level. Besides, to restore the order of proposals, we return an |
|
array which indicates the original index of rois in current proposals. |
|
To compute FPN level for each roi, the formula is given as follows: |
|
|
|
.. math:: |
|
|
|
roi\_scale &= \sqrt{BBoxArea(fpn\_roi)} |
|
|
|
level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level) |
|
|
|
where BBoxArea is a function to compute the area of each roi. |
|
|
|
Args: |
|
|
|
fpn_rois(Variable): 2-D Tensor with shape [N, 4] and data type is |
|
float32 or float64. The input fpn_rois. |
|
min_level(int32): The lowest level of FPN layer where the proposals come |
|
from. |
|
max_level(int32): The highest level of FPN layer where the proposals |
|
come from. |
|
refer_level(int32): The referring level of FPN layer with specified scale. |
|
refer_scale(int32): The referring scale of FPN layer with specified level. |
|
rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image. |
|
The shape is [B] and data type is int32. B is the number of images. |
|
If it is not None then return a list of 1-D Tensor. Each element |
|
is the output RoIs' number of each image on the corresponding level |
|
and the shape is [B]. None by default. |
|
name(str, optional): For detailed information, please refer |
|
to :ref:`api_guide_Name`. Usually name is no need to set and |
|
None by default. |
|
|
|
Returns: |
|
Tuple: |
|
|
|
multi_rois(List) : A list of 2-D LoDTensor with shape [M, 4] |
|
and data type of float32 and float64. The length is |
|
max_level-min_level+1. The proposals in each FPN level. |
|
|
|
restore_ind(Variable): A 2-D Tensor with shape [N, 1], N is |
|
the number of total rois. The data type is int32. It is |
|
used to restore the order of fpn_rois. |
|
|
|
rois_num_per_level(List): A list of 1-D Tensor and each Tensor is |
|
the RoIs' number in each image on the corresponding level. The shape |
|
is [B] and data type of int32. B is the number of images |
|
|
|
|
|
Examples: |
|
.. code-block:: python |
|
|
|
import paddle |
|
from paddlers.models.ppdet.modeling import ops |
|
paddle.enable_static() |
|
fpn_rois = paddle.static.data( |
|
name='data', shape=[None, 4], dtype='float32', lod_level=1) |
|
multi_rois, restore_ind = ops.distribute_fpn_proposals( |
|
fpn_rois=fpn_rois, |
|
min_level=2, |
|
max_level=5, |
|
refer_level=4, |
|
refer_scale=224) |
|
""" |
|
num_lvl = max_level - min_level + 1 |
|
|
|
if in_dygraph_mode(): |
|
assert rois_num is not None, "rois_num should not be None in dygraph mode." |
|
attrs = ('min_level', min_level, 'max_level', max_level, 'refer_level', |
|
refer_level, 'refer_scale', refer_scale, 'pixel_offset', |
|
pixel_offset) |
|
multi_rois, restore_ind, rois_num_per_level = core.ops.distribute_fpn_proposals( |
|
fpn_rois, rois_num, num_lvl, num_lvl, *attrs) |
|
return multi_rois, restore_ind, rois_num_per_level |
|
|
|
else: |
|
check_variable_and_dtype(fpn_rois, 'fpn_rois', ['float32', 'float64'], |
|
'distribute_fpn_proposals') |
|
helper = LayerHelper('distribute_fpn_proposals', **locals()) |
|
dtype = helper.input_dtype('fpn_rois') |
|
multi_rois = [ |
|
helper.create_variable_for_type_inference(dtype) |
|
for i in range(num_lvl) |
|
] |
|
|
|
restore_ind = helper.create_variable_for_type_inference(dtype='int32') |
|
|
|
inputs = {'FpnRois': fpn_rois} |
|
outputs = { |
|
'MultiFpnRois': multi_rois, |
|
'RestoreIndex': restore_ind, |
|
} |
|
|
|
if rois_num is not None: |
|
inputs['RoisNum'] = rois_num |
|
rois_num_per_level = [ |
|
helper.create_variable_for_type_inference(dtype='int32') |
|
for i in range(num_lvl) |
|
] |
|
outputs['MultiLevelRoIsNum'] = rois_num_per_level |
|
|
|
helper.append_op( |
|
type='distribute_fpn_proposals', |
|
inputs=inputs, |
|
outputs=outputs, |
|
attrs={ |
|
'min_level': min_level, |
|
'max_level': max_level, |
|
'refer_level': refer_level, |
|
'refer_scale': refer_scale, |
|
'pixel_offset': pixel_offset |
|
}) |
|
return multi_rois, restore_ind, rois_num_per_level |
|
|
|
|
|
@paddle.jit.not_to_static |
|
def yolo_box( |
|
x, |
|
origin_shape, |
|
anchors, |
|
class_num, |
|
conf_thresh, |
|
downsample_ratio, |
|
clip_bbox=True, |
|
scale_x_y=1., |
|
name=None, ): |
|
""" |
|
|
|
This operator generates YOLO detection boxes from output of YOLOv3 network. |
|
|
|
The output of previous network is in shape [N, C, H, W], while H and W |
|
should be the same, H and W specify the grid size, each grid point predict |
|
given number boxes, this given number, which following will be represented as S, |
|
is specified by the number of anchors. In the second dimension(the channel |
|
dimension), C should be equal to S * (5 + class_num), class_num is the object |
|
category number of source dataset(such as 80 in coco dataset), so the |
|
second(channel) dimension, apart from 4 box location coordinates x, y, w, h, |
|
also includes confidence score of the box and class one-hot key of each anchor |
|
box. |
|
Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box |
|
predictions should be as follows: |
|
$$ |
|
b_x = \\sigma(t_x) + c_x |
|
$$ |
|
$$ |
|
b_y = \\sigma(t_y) + c_y |
|
$$ |
|
$$ |
|
b_w = p_w e^{t_w} |
|
$$ |
|
$$ |
|
b_h = p_h e^{t_h} |
|
$$ |
|
in the equation above, :math:`c_x, c_y` is the left top corner of current grid |
|
and :math:`p_w, p_h` is specified by anchors. |
|
The logistic regression value of the 5th channel of each anchor prediction boxes |
|
represents the confidence score of each prediction box, and the logistic |
|
regression value of the last :attr:`class_num` channels of each anchor prediction |
|
boxes represents the classifcation scores. Boxes with confidence scores less than |
|
:attr:`conf_thresh` should be ignored, and box final scores is the product of |
|
confidence scores and classification scores. |
|
$$ |
|
score_{pred} = score_{conf} * score_{class} |
|
$$ |
|
|
|
Args: |
|
x (Tensor): The input tensor of YoloBox operator is a 4-D tensor with shape of [N, C, H, W]. |
|
The second dimension(C) stores box locations, confidence score and |
|
classification one-hot keys of each anchor box. Generally, X should be the output of YOLOv3 network. |
|
The data type is float32 or float64. |
|
origin_shape (Tensor): The image size tensor of YoloBox operator, This is a 2-D tensor with shape of [N, 2]. |
|
This tensor holds height and width of each input image used for resizing output box in input image |
|
scale. The data type is int32. |
|
anchors (list|tuple): The anchor width and height, it will be parsed pair by pair. |
|
class_num (int): The number of classes to predict. |
|
conf_thresh (float): The confidence scores threshold of detection boxes. Boxes with confidence scores |
|
under threshold should be ignored. |
|
downsample_ratio (int): The downsample ratio from network input to YoloBox operator input, |
|
so 32, 16, 8 should be set for the first, second, and thrid YoloBox operators. |
|
clip_bbox (bool): Whether clip output bonding box in Input(ImgSize) boundary. Default true. |
|
scale_x_y (float): Scale the center point of decoded bounding box. Default 1.0. |
|
name (string): The default value is None. Normally there is no need |
|
for user to set this property. For more information, |
|
please refer to :ref:`api_guide_Name` |
|
|
|
Returns: |
|
boxes Tensor: A 3-D tensor with shape [N, M, 4], the coordinates of boxes, N is the batch num, |
|
M is output box number, and the 3rd dimension stores [xmin, ymin, xmax, ymax] coordinates of boxes. |
|
scores Tensor: A 3-D tensor with shape [N, M, :attr:`class_num`], the coordinates of boxes, N is the batch num, |
|
M is output box number. |
|
|
|
Raises: |
|
TypeError: Attr anchors of yolo box must be list or tuple |
|
TypeError: Attr class_num of yolo box must be an integer |
|
TypeError: Attr conf_thresh of yolo box must be a float number |
|
|
|
Examples: |
|
|
|
.. code-block:: python |
|
|
|
import paddle |
|
from paddlers.models.ppdet.modeling import ops |
|
|
|
paddle.enable_static() |
|
x = paddle.static.data(name='x', shape=[None, 255, 13, 13], dtype='float32') |
|
img_size = paddle.static.data(name='img_size',shape=[None, 2],dtype='int64') |
|
anchors = [10, 13, 16, 30, 33, 23] |
|
boxes,scores = ops.yolo_box(x=x, img_size=img_size, class_num=80, anchors=anchors, |
|
conf_thresh=0.01, downsample_ratio=32) |
|
""" |
|
helper = LayerHelper('yolo_box', **locals()) |
|
|
|
if not isinstance(anchors, list) and not isinstance(anchors, tuple): |
|
raise TypeError("Attr anchors of yolo_box must be list or tuple") |
|
if not isinstance(class_num, int): |
|
raise TypeError("Attr class_num of yolo_box must be an integer") |
|
if not isinstance(conf_thresh, float): |
|
raise TypeError("Attr ignore_thresh of yolo_box must be a float number") |
|
|
|
if in_dygraph_mode(): |
|
attrs = ('anchors', anchors, 'class_num', class_num, 'conf_thresh', |
|
conf_thresh, 'downsample_ratio', downsample_ratio, 'clip_bbox', |
|
clip_bbox, 'scale_x_y', scale_x_y) |
|
boxes, scores = core.ops.yolo_box(x, origin_shape, *attrs) |
|
return boxes, scores |
|
else: |
|
boxes = helper.create_variable_for_type_inference(dtype=x.dtype) |
|
scores = helper.create_variable_for_type_inference(dtype=x.dtype) |
|
|
|
attrs = { |
|
"anchors": anchors, |
|
"class_num": class_num, |
|
"conf_thresh": conf_thresh, |
|
"downsample_ratio": downsample_ratio, |
|
"clip_bbox": clip_bbox, |
|
"scale_x_y": scale_x_y, |
|
} |
|
|
|
helper.append_op( |
|
type='yolo_box', |
|
inputs={ |
|
"X": x, |
|
"ImgSize": origin_shape, |
|
}, |
|
outputs={ |
|
'Boxes': boxes, |
|
'Scores': scores, |
|
}, |
|
attrs=attrs) |
|
return boxes, scores |
|
|
|
|
|
@paddle.jit.not_to_static |
|
def prior_box(input, |
|
image, |
|
min_sizes, |
|
max_sizes=None, |
|
aspect_ratios=[1.], |
|
variance=[0.1, 0.1, 0.2, 0.2], |
|
flip=False, |
|
clip=False, |
|
steps=[0.0, 0.0], |
|
offset=0.5, |
|
min_max_aspect_ratios_order=False, |
|
name=None): |
|
""" |
|
|
|
This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm. |
|
Each position of the input produce N prior boxes, N is determined by |
|
the count of min_sizes, max_sizes and aspect_ratios, The size of the |
|
box is in range(min_size, max_size) interval, which is generated in |
|
sequence according to the aspect_ratios. |
|
|
|
Parameters: |
|
input(Tensor): 4-D tensor(NCHW), the data type should be float32 or float64. |
|
image(Tensor): 4-D tensor(NCHW), the input image data of PriorBoxOp, |
|
the data type should be float32 or float64. |
|
min_sizes(list|tuple|float): the min sizes of generated prior boxes. |
|
max_sizes(list|tuple|None): the max sizes of generated prior boxes. |
|
Default: None. |
|
aspect_ratios(list|tuple|float): the aspect ratios of generated |
|
prior boxes. Default: [1.]. |
|
variance(list|tuple): the variances to be encoded in prior boxes. |
|
Default:[0.1, 0.1, 0.2, 0.2]. |
|
flip(bool): Whether to flip aspect ratios. Default:False. |
|
clip(bool): Whether to clip out-of-boundary boxes. Default: False. |
|
step(list|tuple): Prior boxes step across width and height, If |
|
step[0] equals to 0.0 or step[1] equals to 0.0, the prior boxes step across |
|
height or weight of the input will be automatically calculated. |
|
Default: [0., 0.] |
|
offset(float): Prior boxes center offset. Default: 0.5 |
|
min_max_aspect_ratios_order(bool): If set True, the output prior box is |
|
in order of [min, max, aspect_ratios], which is consistent with |
|
Caffe. Please note, this order affects the weights order of |
|
convolution layer followed by and does not affect the final |
|
detection results. Default: False. |
|
name(str, optional): The default value is None. Normally there is no need for |
|
user to set this property. For more information, please refer to :ref:`api_guide_Name` |
|
|
|
Returns: |
|
Tuple: A tuple with two Variable (boxes, variances) |
|
|
|
boxes(Tensor): the output prior boxes of PriorBox. |
|
4-D tensor, the layout is [H, W, num_priors, 4]. |
|
H is the height of input, W is the width of input, |
|
num_priors is the total box count of each position of input. |
|
|
|
variances(Tensor): the expanded variances of PriorBox. |
|
4-D tensor, the layput is [H, W, num_priors, 4]. |
|
H is the height of input, W is the width of input |
|
num_priors is the total box count of each position of input |
|
|
|
Examples: |
|
.. code-block:: python |
|
|
|
import paddle |
|
from paddlers.models.ppdet.modeling import ops |
|
|
|
paddle.enable_static() |
|
input = paddle.static.data(name="input", shape=[None,3,6,9]) |
|
image = paddle.static.data(name="image", shape=[None,3,9,12]) |
|
box, var = ops.prior_box( |
|
input=input, |
|
image=image, |
|
min_sizes=[100.], |
|
clip=True, |
|
flip=True) |
|
""" |
|
helper = LayerHelper("prior_box", **locals()) |
|
dtype = helper.input_dtype() |
|
check_variable_and_dtype( |
|
input, 'input', ['uint8', 'int8', 'float32', 'float64'], 'prior_box') |
|
|
|
def _is_list_or_tuple_(data): |
|
return (isinstance(data, list) or isinstance(data, tuple)) |
|
|
|
if not _is_list_or_tuple_(min_sizes): |
|
min_sizes = [min_sizes] |
|
if not _is_list_or_tuple_(aspect_ratios): |
|
aspect_ratios = [aspect_ratios] |
|
if not (_is_list_or_tuple_(steps) and len(steps) == 2): |
|
raise ValueError('steps should be a list or tuple ', |
|
'with length 2, (step_width, step_height).') |
|
|
|
min_sizes = list(map(float, min_sizes)) |
|
aspect_ratios = list(map(float, aspect_ratios)) |
|
steps = list(map(float, steps)) |
|
|
|
cur_max_sizes = None |
|
if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0: |
|
if not _is_list_or_tuple_(max_sizes): |
|
max_sizes = [max_sizes] |
|
cur_max_sizes = max_sizes |
|
|
|
if in_dygraph_mode(): |
|
attrs = ('min_sizes', min_sizes, 'aspect_ratios', aspect_ratios, |
|
'variances', variance, 'flip', flip, 'clip', clip, 'step_w', |
|
steps[0], 'step_h', steps[1], 'offset', offset, |
|
'min_max_aspect_ratios_order', min_max_aspect_ratios_order) |
|
if cur_max_sizes is not None: |
|
attrs += ('max_sizes', cur_max_sizes) |
|
box, var = core.ops.prior_box(input, image, *attrs) |
|
return box, var |
|
else: |
|
attrs = { |
|
'min_sizes': min_sizes, |
|
'aspect_ratios': aspect_ratios, |
|
'variances': variance, |
|
'flip': flip, |
|
'clip': clip, |
|
'step_w': steps[0], |
|
'step_h': steps[1], |
|
'offset': offset, |
|
'min_max_aspect_ratios_order': min_max_aspect_ratios_order |
|
} |
|
|
|
if cur_max_sizes is not None: |
|
attrs['max_sizes'] = cur_max_sizes |
|
|
|
box = helper.create_variable_for_type_inference(dtype) |
|
var = helper.create_variable_for_type_inference(dtype) |
|
helper.append_op( |
|
type="prior_box", |
|
inputs={"Input": input, |
|
"Image": image}, |
|
outputs={"Boxes": box, |
|
"Variances": var}, |
|
attrs=attrs, ) |
|
box.stop_gradient = True |
|
var.stop_gradient = True |
|
return box, var |
|
|
|
|
|
@paddle.jit.not_to_static |
|
def multiclass_nms(bboxes, |
|
scores, |
|
score_threshold, |
|
nms_top_k, |
|
keep_top_k, |
|
nms_threshold=0.3, |
|
normalized=True, |
|
nms_eta=1., |
|
background_label=-1, |
|
return_index=False, |
|
return_rois_num=True, |
|
rois_num=None, |
|
name=None): |
|
""" |
|
This operator is to do multi-class non maximum suppression (NMS) on |
|
boxes and scores. |
|
In the NMS step, this operator greedily selects a subset of detection bounding |
|
boxes that have high scores larger than score_threshold, if providing this |
|
threshold, then selects the largest nms_top_k confidences scores if nms_top_k |
|
is larger than -1. Then this operator pruns away boxes that have high IOU |
|
(intersection over union) overlap with already selected boxes by adaptive |
|
threshold NMS based on parameters of nms_threshold and nms_eta. |
|
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept |
|
per image if keep_top_k is larger than -1. |
|
Args: |
|
bboxes (Tensor): Two types of bboxes are supported: |
|
1. (Tensor) A 3-D Tensor with shape |
|
[N, M, 4 or 8 16 24 32] represents the |
|
predicted locations of M bounding bboxes, |
|
N is the batch size. Each bounding box has four |
|
coordinate values and the layout is |
|
[xmin, ymin, xmax, ymax], when box size equals to 4. |
|
2. (LoDTensor) A 3-D Tensor with shape [M, C, 4] |
|
M is the number of bounding boxes, C is the |
|
class number |
|
scores (Tensor): Two types of scores are supported: |
|
1. (Tensor) A 3-D Tensor with shape [N, C, M] |
|
represents the predicted confidence predictions. |
|
N is the batch size, C is the class number, M is |
|
number of bounding boxes. For each category there |
|
are total M scores which corresponding M bounding |
|
boxes. Please note, M is equal to the 2nd dimension |
|
of BBoxes. |
|
2. (LoDTensor) A 2-D LoDTensor with shape [M, C]. |
|
M is the number of bbox, C is the class number. |
|
In this case, input BBoxes should be the second |
|
case with shape [M, C, 4]. |
|
background_label (int): The index of background label, the background |
|
label will be ignored. If set to -1, then all |
|
categories will be considered. Default: 0 |
|
score_threshold (float): Threshold to filter out bounding boxes with |
|
low confidence score. If not provided, |
|
consider all boxes. |
|
nms_top_k (int): Maximum number of detections to be kept according to |
|
the confidences after the filtering detections based |
|
on score_threshold. |
|
nms_threshold (float): The threshold to be used in NMS. Default: 0.3 |
|
nms_eta (float): The threshold to be used in NMS. Default: 1.0 |
|
keep_top_k (int): Number of total bboxes to be kept per image after NMS |
|
step. -1 means keeping all bboxes after NMS step. |
|
normalized (bool): Whether detections are normalized. Default: True |
|
return_index(bool): Whether return selected index. Default: False |
|
rois_num(Tensor): 1-D Tensor contains the number of RoIs in each image. |
|
The shape is [B] and data type is int32. B is the number of images. |
|
If it is not None then return a list of 1-D Tensor. Each element |
|
is the output RoIs' number of each image on the corresponding level |
|
and the shape is [B]. None by default. |
|
name(str): Name of the multiclass nms op. Default: None. |
|
Returns: |
|
A tuple with two Variables: (Out, Index) if return_index is True, |
|
otherwise, a tuple with one Variable(Out) is returned. |
|
Out: A 2-D LoDTensor with shape [No, 6] represents the detections. |
|
Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax] |
|
or A 2-D LoDTensor with shape [No, 10] represents the detections. |
|
Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3, |
|
x4, y4]. No is the total number of detections. |
|
If all images have not detected results, all elements in LoD will be |
|
0, and output tensor is empty (None). |
|
Index: Only return when return_index is True. A 2-D LoDTensor with |
|
shape [No, 1] represents the selected index which type is Integer. |
|
The index is the absolute value cross batches. No is the same number |
|
as Out. If the index is used to gather other attribute such as age, |
|
one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where |
|
N is the batch size and M is the number of boxes. |
|
Examples: |
|
.. code-block:: python |
|
|
|
import paddle |
|
from paddlers.models.ppdet.modeling import ops |
|
boxes = paddle.static.data(name='bboxes', shape=[81, 4], |
|
dtype='float32', lod_level=1) |
|
scores = paddle.static.data(name='scores', shape=[81], |
|
dtype='float32', lod_level=1) |
|
out, index = ops.multiclass_nms(bboxes=boxes, |
|
scores=scores, |
|
background_label=0, |
|
score_threshold=0.5, |
|
nms_top_k=400, |
|
nms_threshold=0.3, |
|
keep_top_k=200, |
|
normalized=False, |
|
return_index=True) |
|
""" |
|
helper = LayerHelper('multiclass_nms3', **locals()) |
|
|
|
if in_dygraph_mode(): |
|
attrs = ('background_label', background_label, 'score_threshold', |
|
score_threshold, 'nms_top_k', nms_top_k, 'nms_threshold', |
|
nms_threshold, 'keep_top_k', keep_top_k, 'nms_eta', nms_eta, |
|
'normalized', normalized) |
|
output, index, nms_rois_num = core.ops.multiclass_nms3(bboxes, scores, |
|
rois_num, *attrs) |
|
if not return_index: |
|
index = None |
|
return output, nms_rois_num, index |
|
|
|
else: |
|
output = helper.create_variable_for_type_inference(dtype=bboxes.dtype) |
|
index = helper.create_variable_for_type_inference(dtype='int32') |
|
|
|
inputs = {'BBoxes': bboxes, 'Scores': scores} |
|
outputs = {'Out': output, 'Index': index} |
|
|
|
if rois_num is not None: |
|
inputs['RoisNum'] = rois_num |
|
|
|
if return_rois_num: |
|
nms_rois_num = helper.create_variable_for_type_inference( |
|
dtype='int32') |
|
outputs['NmsRoisNum'] = nms_rois_num |
|
|
|
helper.append_op( |
|
type="multiclass_nms3", |
|
inputs=inputs, |
|
attrs={ |
|
'background_label': background_label, |
|
'score_threshold': score_threshold, |
|
'nms_top_k': nms_top_k, |
|
'nms_threshold': nms_threshold, |
|
'keep_top_k': keep_top_k, |
|
'nms_eta': nms_eta, |
|
'normalized': normalized |
|
}, |
|
outputs=outputs) |
|
output.stop_gradient = True |
|
index.stop_gradient = True |
|
if not return_index: |
|
index = None |
|
if not return_rois_num: |
|
nms_rois_num = None |
|
|
|
return output, nms_rois_num, index |
|
|
|
|
|
@paddle.jit.not_to_static |
|
def matrix_nms(bboxes, |
|
scores, |
|
score_threshold, |
|
post_threshold, |
|
nms_top_k, |
|
keep_top_k, |
|
use_gaussian=False, |
|
gaussian_sigma=2., |
|
background_label=0, |
|
normalized=True, |
|
return_index=False, |
|
return_rois_num=True, |
|
name=None): |
|
""" |
|
**Matrix NMS** |
|
This operator does matrix non maximum suppression (NMS). |
|
First selects a subset of candidate bounding boxes that have higher scores |
|
than score_threshold (if provided), then the top k candidate is selected if |
|
nms_top_k is larger than -1. Score of the remaining candidate are then |
|
decayed according to the Matrix NMS scheme. |
|
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept |
|
per image if keep_top_k is larger than -1. |
|
Args: |
|
bboxes (Tensor): A 3-D Tensor with shape [N, M, 4] represents the |
|
predicted locations of M bounding bboxes, |
|
N is the batch size. Each bounding box has four |
|
coordinate values and the layout is |
|
[xmin, ymin, xmax, ymax], when box size equals to 4. |
|
The data type is float32 or float64. |
|
scores (Tensor): A 3-D Tensor with shape [N, C, M] |
|
represents the predicted confidence predictions. |
|
N is the batch size, C is the class number, M is |
|
number of bounding boxes. For each category there |
|
are total M scores which corresponding M bounding |
|
boxes. Please note, M is equal to the 2nd dimension |
|
of BBoxes. The data type is float32 or float64. |
|
score_threshold (float): Threshold to filter out bounding boxes with |
|
low confidence score. |
|
post_threshold (float): Threshold to filter out bounding boxes with |
|
low confidence score AFTER decaying. |
|
nms_top_k (int): Maximum number of detections to be kept according to |
|
the confidences after the filtering detections based |
|
on score_threshold. |
|
keep_top_k (int): Number of total bboxes to be kept per image after NMS |
|
step. -1 means keeping all bboxes after NMS step. |
|
use_gaussian (bool): Use Gaussian as the decay function. Default: False |
|
gaussian_sigma (float): Sigma for Gaussian decay function. Default: 2.0 |
|
background_label (int): The index of background label, the background |
|
label will be ignored. If set to -1, then all |
|
categories will be considered. Default: 0 |
|
normalized (bool): Whether detections are normalized. Default: True |
|
return_index(bool): Whether return selected index. Default: False |
|
return_rois_num(bool): whether return rois_num. Default: True |
|
name(str): Name of the matrix nms op. Default: None. |
|
Returns: |
|
A tuple with three Tensor: (Out, Index, RoisNum) if return_index is True, |
|
otherwise, a tuple with two Tensor (Out, RoisNum) is returned. |
|
Out (Tensor): A 2-D Tensor with shape [No, 6] containing the |
|
detection results. |
|
Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax] |
|
(After version 1.3, when no boxes detected, the lod is changed |
|
from {0} to {1}) |
|
Index (Tensor): A 2-D Tensor with shape [No, 1] containing the |
|
selected indices, which are absolute values cross batches. |
|
rois_num (Tensor): A 1-D Tensor with shape [N] containing |
|
the number of detected boxes in each image. |
|
Examples: |
|
.. code-block:: python |
|
import paddle |
|
from paddlers.models.ppdet.modeling import ops |
|
boxes = paddle.static.data(name='bboxes', shape=[None,81, 4], |
|
dtype='float32', lod_level=1) |
|
scores = paddle.static.data(name='scores', shape=[None,81], |
|
dtype='float32', lod_level=1) |
|
out = ops.matrix_nms(bboxes=boxes, scores=scores, background_label=0, |
|
score_threshold=0.5, post_threshold=0.1, |
|
nms_top_k=400, keep_top_k=200, normalized=False) |
|
""" |
|
check_variable_and_dtype(bboxes, 'BBoxes', ['float32', 'float64'], |
|
'matrix_nms') |
|
check_variable_and_dtype(scores, 'Scores', ['float32', 'float64'], |
|
'matrix_nms') |
|
check_type(score_threshold, 'score_threshold', float, 'matrix_nms') |
|
check_type(post_threshold, 'post_threshold', float, 'matrix_nms') |
|
check_type(nms_top_k, 'nums_top_k', int, 'matrix_nms') |
|
check_type(keep_top_k, 'keep_top_k', int, 'matrix_nms') |
|
check_type(normalized, 'normalized', bool, 'matrix_nms') |
|
check_type(use_gaussian, 'use_gaussian', bool, 'matrix_nms') |
|
check_type(gaussian_sigma, 'gaussian_sigma', float, 'matrix_nms') |
|
check_type(background_label, 'background_label', int, 'matrix_nms') |
|
|
|
if in_dygraph_mode(): |
|
attrs = ('background_label', background_label, 'score_threshold', |
|
score_threshold, 'post_threshold', post_threshold, 'nms_top_k', |
|
nms_top_k, 'gaussian_sigma', gaussian_sigma, 'use_gaussian', |
|
use_gaussian, 'keep_top_k', keep_top_k, 'normalized', |
|
normalized) |
|
out, index, rois_num = core.ops.matrix_nms(bboxes, scores, *attrs) |
|
if not return_index: |
|
index = None |
|
if not return_rois_num: |
|
rois_num = None |
|
return out, rois_num, index |
|
else: |
|
helper = LayerHelper('matrix_nms', **locals()) |
|
output = helper.create_variable_for_type_inference(dtype=bboxes.dtype) |
|
index = helper.create_variable_for_type_inference(dtype='int32') |
|
outputs = {'Out': output, 'Index': index} |
|
if return_rois_num: |
|
rois_num = helper.create_variable_for_type_inference(dtype='int32') |
|
outputs['RoisNum'] = rois_num |
|
|
|
helper.append_op( |
|
type="matrix_nms", |
|
inputs={'BBoxes': bboxes, |
|
'Scores': scores}, |
|
attrs={ |
|
'background_label': background_label, |
|
'score_threshold': score_threshold, |
|
'post_threshold': post_threshold, |
|
'nms_top_k': nms_top_k, |
|
'gaussian_sigma': gaussian_sigma, |
|
'use_gaussian': use_gaussian, |
|
'keep_top_k': keep_top_k, |
|
'normalized': normalized |
|
}, |
|
outputs=outputs) |
|
output.stop_gradient = True |
|
|
|
if not return_index: |
|
index = None |
|
if not return_rois_num: |
|
rois_num = None |
|
return output, rois_num, index |
|
|
|
|
|
def bipartite_match(dist_matrix, |
|
match_type=None, |
|
dist_threshold=None, |
|
name=None): |
|
""" |
|
|
|
This operator implements a greedy bipartite matching algorithm, which is |
|
used to obtain the matching with the maximum distance based on the input |
|
distance matrix. For input 2D matrix, the bipartite matching algorithm can |
|
find the matched column for each row (matched means the largest distance), |
|
also can find the matched row for each column. And this operator only |
|
calculate matched indices from column to row. For each instance, |
|
the number of matched indices is the column number of the input distance |
|
matrix. **The OP only supports CPU**. |
|
|
|
There are two outputs, matched indices and distance. |
|
A simple description, this algorithm matched the best (maximum distance) |
|
row entity to the column entity and the matched indices are not duplicated |
|
in each row of ColToRowMatchIndices. If the column entity is not matched |
|
any row entity, set -1 in ColToRowMatchIndices. |
|
|
|
NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor. |
|
If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size. |
|
If Tensor, the height of ColToRowMatchIndices is 1. |
|
|
|
NOTE: This API is a very low level API. It is used by :code:`ssd_loss` |
|
layer. Please consider to use :code:`ssd_loss` instead. |
|
|
|
Args: |
|
dist_matrix(Tensor): This input is a 2-D LoDTensor with shape |
|
[K, M]. The data type is float32 or float64. It is pair-wise |
|
distance matrix between the entities represented by each row and |
|
each column. For example, assumed one entity is A with shape [K], |
|
another entity is B with shape [M]. The dist_matrix[i][j] is the |
|
distance between A[i] and B[j]. The bigger the distance is, the |
|
better matching the pairs are. NOTE: This tensor can contain LoD |
|
information to represent a batch of inputs. One instance of this |
|
batch can contain different numbers of entities. |
|
match_type(str, optional): The type of matching method, should be |
|
'bipartite' or 'per_prediction'. None ('bipartite') by default. |
|
dist_threshold(float32, optional): If `match_type` is 'per_prediction', |
|
this threshold is to determine the extra matching bboxes based |
|
on the maximum distance, 0.5 by default. |
|
name(str, optional): For detailed information, please refer |
|
to :ref:`api_guide_Name`. Usually name is no need to set and |
|
None by default. |
|
|
|
Returns: |
|
Tuple: |
|
|
|
matched_indices(Tensor): A 2-D Tensor with shape [N, M]. The data |
|
type is int32. N is the batch size. If match_indices[i][j] is -1, it |
|
means B[j] does not match any entity in i-th instance. |
|
Otherwise, it means B[j] is matched to row |
|
match_indices[i][j] in i-th instance. The row number of |
|
i-th instance is saved in match_indices[i][j]. |
|
|
|
matched_distance(Tensor): A 2-D Tensor with shape [N, M]. The data |
|
type is float32. N is batch size. If match_indices[i][j] is -1, |
|
match_distance[i][j] is also -1.0. Otherwise, assumed |
|
match_distance[i][j] = d, and the row offsets of each instance |
|
are called LoD. Then match_distance[i][j] = |
|
dist_matrix[d+LoD[i]][j]. |
|
|
|
Examples: |
|
|
|
.. code-block:: python |
|
import paddle |
|
from paddlers.models.ppdet.modeling import ops |
|
from paddlers.models.ppdet.modeling.utils import iou_similarity |
|
|
|
paddle.enable_static() |
|
|
|
x = paddle.static.data(name='x', shape=[None, 4], dtype='float32') |
|
y = paddle.static.data(name='y', shape=[None, 4], dtype='float32') |
|
iou = iou_similarity(x=x, y=y) |
|
matched_indices, matched_dist = ops.bipartite_match(iou) |
|
""" |
|
check_variable_and_dtype(dist_matrix, 'dist_matrix', |
|
['float32', 'float64'], 'bipartite_match') |
|
|
|
if in_dygraph_mode(): |
|
match_indices, match_distance = core.ops.bipartite_match( |
|
dist_matrix, "match_type", match_type, "dist_threshold", |
|
dist_threshold) |
|
return match_indices, match_distance |
|
|
|
helper = LayerHelper('bipartite_match', **locals()) |
|
match_indices = helper.create_variable_for_type_inference(dtype='int32') |
|
match_distance = helper.create_variable_for_type_inference( |
|
dtype=dist_matrix.dtype) |
|
helper.append_op( |
|
type='bipartite_match', |
|
inputs={'DistMat': dist_matrix}, |
|
attrs={ |
|
'match_type': match_type, |
|
'dist_threshold': dist_threshold, |
|
}, |
|
outputs={ |
|
'ColToRowMatchIndices': match_indices, |
|
'ColToRowMatchDist': match_distance |
|
}) |
|
return match_indices, match_distance |
|
|
|
|
|
@paddle.jit.not_to_static |
|
def box_coder(prior_box, |
|
prior_box_var, |
|
target_box, |
|
code_type="encode_center_size", |
|
box_normalized=True, |
|
axis=0, |
|
name=None): |
|
r""" |
|
**Box Coder Layer** |
|
Encode/Decode the target bounding box with the priorbox information. |
|
|
|
The Encoding schema described below: |
|
.. math:: |
|
ox = (tx - px) / pw / pxv |
|
oy = (ty - py) / ph / pyv |
|
ow = \log(\abs(tw / pw)) / pwv |
|
oh = \log(\abs(th / ph)) / phv |
|
The Decoding schema described below: |
|
|
|
.. math:: |
|
|
|
ox = (pw * pxv * tx * + px) - tw / 2 |
|
oy = (ph * pyv * ty * + py) - th / 2 |
|
ow = \exp(pwv * tw) * pw + tw / 2 |
|
oh = \exp(phv * th) * ph + th / 2 |
|
where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, |
|
width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote |
|
the priorbox's (anchor) center coordinates, width and height. `pxv`, |
|
`pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, |
|
`ow`, `oh` denote the encoded/decoded coordinates, width and height. |
|
During Box Decoding, two modes for broadcast are supported. Say target |
|
box has shape [N, M, 4], and the shape of prior box can be [N, 4] or |
|
[M, 4]. Then prior box will broadcast to target box along the |
|
assigned axis. |
|
|
|
Args: |
|
prior_box(Tensor): Box list prior_box is a 2-D Tensor with shape |
|
[M, 4] holds M boxes and data type is float32 or float64. Each box |
|
is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the |
|
left top coordinate of the anchor box, if the input is image feature |
|
map, they are close to the origin of the coordinate system. |
|
[xmax, ymax] is the right bottom coordinate of the anchor box. |
|
prior_box_var(List|Tensor|None): prior_box_var supports three types |
|
of input. One is Tensor with shape [M, 4] which holds M group and |
|
data type is float32 or float64. The second is list consist of |
|
4 elements shared by all boxes and data type is float32 or float64. |
|
Other is None and not involved in calculation. |
|
target_box(Tensor): This input can be a 2-D LoDTensor with shape |
|
[N, 4] when code_type is 'encode_center_size'. This input also can |
|
be a 3-D Tensor with shape [N, M, 4] when code_type is |
|
'decode_center_size'. Each box is represented as |
|
[xmin, ymin, xmax, ymax]. The data type is float32 or float64. |
|
code_type(str): The code type used with the target box. It can be |
|
`encode_center_size` or `decode_center_size`. `encode_center_size` |
|
by default. |
|
box_normalized(bool): Whether treat the priorbox as a normalized box. |
|
Set true by default. |
|
axis(int): Which axis in PriorBox to broadcast for box decode, |
|
for example, if axis is 0 and TargetBox has shape [N, M, 4] and |
|
PriorBox has shape [M, 4], then PriorBox will broadcast to [N, M, 4] |
|
for decoding. It is only valid when code type is |
|
`decode_center_size`. Set 0 by default. |
|
name(str, optional): For detailed information, please refer |
|
to :ref:`api_guide_Name`. Usually name is no need to set and |
|
None by default. |
|
|
|
Returns: |
|
Tensor: |
|
output_box(Tensor): When code_type is 'encode_center_size', the |
|
output tensor of box_coder_op with shape [N, M, 4] representing the |
|
result of N target boxes encoded with M Prior boxes and variances. |
|
When code_type is 'decode_center_size', N represents the batch size |
|
and M represents the number of decoded boxes. |
|
|
|
Examples: |
|
|
|
.. code-block:: python |
|
|
|
import paddle |
|
from paddlers.models.ppdet.modeling import ops |
|
paddle.enable_static() |
|
# For encode |
|
prior_box_encode = paddle.static.data(name='prior_box_encode', |
|
shape=[512, 4], |
|
dtype='float32') |
|
target_box_encode = paddle.static.data(name='target_box_encode', |
|
shape=[81, 4], |
|
dtype='float32') |
|
output_encode = ops.box_coder(prior_box=prior_box_encode, |
|
prior_box_var=[0.1,0.1,0.2,0.2], |
|
target_box=target_box_encode, |
|
code_type="encode_center_size") |
|
# For decode |
|
prior_box_decode = paddle.static.data(name='prior_box_decode', |
|
shape=[512, 4], |
|
dtype='float32') |
|
target_box_decode = paddle.static.data(name='target_box_decode', |
|
shape=[512, 81, 4], |
|
dtype='float32') |
|
output_decode = ops.box_coder(prior_box=prior_box_decode, |
|
prior_box_var=[0.1,0.1,0.2,0.2], |
|
target_box=target_box_decode, |
|
code_type="decode_center_size", |
|
box_normalized=False, |
|
axis=1) |
|
""" |
|
check_variable_and_dtype(prior_box, 'prior_box', ['float32', 'float64'], |
|
'box_coder') |
|
check_variable_and_dtype(target_box, 'target_box', ['float32', 'float64'], |
|
'box_coder') |
|
|
|
if in_dygraph_mode(): |
|
if isinstance(prior_box_var, Variable): |
|
output_box = core.ops.box_coder( |
|
prior_box, prior_box_var, target_box, "code_type", code_type, |
|
"box_normalized", box_normalized, "axis", axis) |
|
|
|
elif isinstance(prior_box_var, list): |
|
output_box = core.ops.box_coder( |
|
prior_box, None, target_box, "code_type", code_type, |
|
"box_normalized", box_normalized, "axis", axis, "variance", |
|
prior_box_var) |
|
else: |
|
raise TypeError( |
|
"Input variance of box_coder must be Variable or list") |
|
return output_box |
|
else: |
|
helper = LayerHelper("box_coder", **locals()) |
|
|
|
output_box = helper.create_variable_for_type_inference( |
|
dtype=prior_box.dtype) |
|
|
|
inputs = {"PriorBox": prior_box, "TargetBox": target_box} |
|
attrs = { |
|
"code_type": code_type, |
|
"box_normalized": box_normalized, |
|
"axis": axis |
|
} |
|
if isinstance(prior_box_var, Variable): |
|
inputs['PriorBoxVar'] = prior_box_var |
|
elif isinstance(prior_box_var, list): |
|
attrs['variance'] = prior_box_var |
|
else: |
|
raise TypeError( |
|
"Input variance of box_coder must be Variable or list") |
|
helper.append_op( |
|
type="box_coder", |
|
inputs=inputs, |
|
attrs=attrs, |
|
outputs={"OutputBox": output_box}) |
|
return output_box |
|
|
|
|
|
@paddle.jit.not_to_static |
|
def generate_proposals(scores, |
|
bbox_deltas, |
|
im_shape, |
|
anchors, |
|
variances, |
|
pre_nms_top_n=6000, |
|
post_nms_top_n=1000, |
|
nms_thresh=0.5, |
|
min_size=0.1, |
|
eta=1.0, |
|
pixel_offset=False, |
|
return_rois_num=False, |
|
name=None): |
|
""" |
|
**Generate proposal Faster-RCNN** |
|
This operation proposes RoIs according to each box with their |
|
probability to be a foreground object and |
|
the box can be calculated by anchors. Bbox_deltais and scores |
|
to be an object are the output of RPN. Final proposals |
|
could be used to train detection net. |
|
For generating proposals, this operation performs following steps: |
|
1. Transposes and resizes scores and bbox_deltas in size of |
|
(H*W*A, 1) and (H*W*A, 4) |
|
2. Calculate box locations as proposals candidates. |
|
3. Clip boxes to image |
|
4. Remove predicted boxes with small area. |
|
5. Apply NMS to get final proposals as output. |
|
Args: |
|
scores(Tensor): A 4-D Tensor with shape [N, A, H, W] represents |
|
the probability for each box to be an object. |
|
N is batch size, A is number of anchors, H and W are height and |
|
width of the feature map. The data type must be float32. |
|
bbox_deltas(Tensor): A 4-D Tensor with shape [N, 4*A, H, W] |
|
represents the difference between predicted box location and |
|
anchor location. The data type must be float32. |
|
im_shape(Tensor): A 2-D Tensor with shape [N, 2] represents H, W, the |
|
origin image size or input size. The data type can be float32 or |
|
float64. |
|
anchors(Tensor): A 4-D Tensor represents the anchors with a layout |
|
of [H, W, A, 4]. H and W are height and width of the feature map, |
|
num_anchors is the box count of each position. Each anchor is |
|
in (xmin, ymin, xmax, ymax) format an unnormalized. The data type must be float32. |
|
variances(Tensor): A 4-D Tensor. The expanded variances of anchors with a layout of |
|
[H, W, num_priors, 4]. Each variance is in |
|
(xcenter, ycenter, w, h) format. The data type must be float32. |
|
pre_nms_top_n(float): Number of total bboxes to be kept per |
|
image before NMS. The data type must be float32. `6000` by default. |
|
post_nms_top_n(float): Number of total bboxes to be kept per |
|
image after NMS. The data type must be float32. `1000` by default. |
|
nms_thresh(float): Threshold in NMS. The data type must be float32. `0.5` by default. |
|
min_size(float): Remove predicted boxes with either height or |
|
width < min_size. The data type must be float32. `0.1` by default. |
|
eta(float): Apply in adaptive NMS, if adaptive `threshold > 0.5`, |
|
`adaptive_threshold = adaptive_threshold * eta` in each iteration. |
|
return_rois_num(bool): When setting True, it will return a 1D Tensor with shape [N, ] that includes Rois's |
|
num of each image in one batch. The N is the image's num. For example, the tensor has values [4,5] that represents |
|
the first image has 4 Rois, the second image has 5 Rois. It only used in rcnn model. |
|
'False' by default. |
|
name(str, optional): For detailed information, please refer |
|
to :ref:`api_guide_Name`. Usually name is no need to set and |
|
None by default. |
|
|
|
Returns: |
|
tuple: |
|
A tuple with format ``(rpn_rois, rpn_roi_probs)``. |
|
- **rpn_rois**: The generated RoIs. 2-D Tensor with shape ``[N, 4]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``. |
|
- **rpn_roi_probs**: The scores of generated RoIs. 2-D Tensor with shape ``[N, 1]`` while ``N`` is the number of RoIs. The data type is the same as ``scores``. |
|
|
|
Examples: |
|
.. code-block:: python |
|
|
|
import paddle |
|
from paddlers.models.ppdet.modeling import ops |
|
paddle.enable_static() |
|
scores = paddle.static.data(name='scores', shape=[None, 4, 5, 5], dtype='float32') |
|
bbox_deltas = paddle.static.data(name='bbox_deltas', shape=[None, 16, 5, 5], dtype='float32') |
|
im_shape = paddle.static.data(name='im_shape', shape=[None, 2], dtype='float32') |
|
anchors = paddle.static.data(name='anchors', shape=[None, 5, 4, 4], dtype='float32') |
|
variances = paddle.static.data(name='variances', shape=[None, 5, 10, 4], dtype='float32') |
|
rois, roi_probs = ops.generate_proposals(scores, bbox_deltas, |
|
im_shape, anchors, variances) |
|
""" |
|
if in_dygraph_mode(): |
|
assert return_rois_num, "return_rois_num should be True in dygraph mode." |
|
attrs = ('pre_nms_topN', pre_nms_top_n, 'post_nms_topN', post_nms_top_n, |
|
'nms_thresh', nms_thresh, 'min_size', min_size, 'eta', eta, |
|
'pixel_offset', pixel_offset) |
|
rpn_rois, rpn_roi_probs, rpn_rois_num = core.ops.generate_proposals_v2( |
|
scores, bbox_deltas, im_shape, anchors, variances, *attrs) |
|
return rpn_rois, rpn_roi_probs, rpn_rois_num |
|
|
|
else: |
|
helper = LayerHelper('generate_proposals_v2', **locals()) |
|
|
|
check_variable_and_dtype(scores, 'scores', ['float32'], |
|
'generate_proposals_v2') |
|
check_variable_and_dtype(bbox_deltas, 'bbox_deltas', ['float32'], |
|
'generate_proposals_v2') |
|
check_variable_and_dtype(im_shape, 'im_shape', ['float32', 'float64'], |
|
'generate_proposals_v2') |
|
check_variable_and_dtype(anchors, 'anchors', ['float32'], |
|
'generate_proposals_v2') |
|
check_variable_and_dtype(variances, 'variances', ['float32'], |
|
'generate_proposals_v2') |
|
|
|
rpn_rois = helper.create_variable_for_type_inference( |
|
dtype=bbox_deltas.dtype) |
|
rpn_roi_probs = helper.create_variable_for_type_inference( |
|
dtype=scores.dtype) |
|
outputs = { |
|
'RpnRois': rpn_rois, |
|
'RpnRoiProbs': rpn_roi_probs, |
|
} |
|
if return_rois_num: |
|
rpn_rois_num = helper.create_variable_for_type_inference( |
|
dtype='int32') |
|
rpn_rois_num.stop_gradient = True |
|
outputs['RpnRoisNum'] = rpn_rois_num |
|
|
|
helper.append_op( |
|
type="generate_proposals_v2", |
|
inputs={ |
|
'Scores': scores, |
|
'BboxDeltas': bbox_deltas, |
|
'ImShape': im_shape, |
|
'Anchors': anchors, |
|
'Variances': variances |
|
}, |
|
attrs={ |
|
'pre_nms_topN': pre_nms_top_n, |
|
'post_nms_topN': post_nms_top_n, |
|
'nms_thresh': nms_thresh, |
|
'min_size': min_size, |
|
'eta': eta, |
|
'pixel_offset': pixel_offset |
|
}, |
|
outputs=outputs) |
|
rpn_rois.stop_gradient = True |
|
rpn_roi_probs.stop_gradient = True |
|
|
|
return rpn_rois, rpn_roi_probs, rpn_rois_num |
|
|
|
|
|
def sigmoid_cross_entropy_with_logits(input, |
|
label, |
|
ignore_index=-100, |
|
normalize=False): |
|
output = F.binary_cross_entropy_with_logits(input, label, reduction='none') |
|
mask_tensor = paddle.cast(label != ignore_index, 'float32') |
|
output = paddle.multiply(output, mask_tensor) |
|
if normalize: |
|
sum_valid_mask = paddle.sum(mask_tensor) |
|
output = output / sum_valid_mask |
|
return output |
|
|
|
|
|
def smooth_l1(input, label, inside_weight=None, outside_weight=None, |
|
sigma=None): |
|
input_new = paddle.multiply(input, inside_weight) |
|
label_new = paddle.multiply(label, inside_weight) |
|
delta = 1 / (sigma * sigma) |
|
out = F.smooth_l1_loss(input_new, label_new, reduction='none', delta=delta) |
|
out = paddle.multiply(out, outside_weight) |
|
out = out / delta |
|
out = paddle.reshape(out, shape=[out.shape[0], -1]) |
|
out = paddle.sum(out, axis=1) |
|
return out |
|
|
|
|
|
def channel_shuffle(x, groups): |
|
batch_size, num_channels, height, width = x.shape[0:4] |
|
assert num_channels % groups == 0, 'num_channels should be divisible by groups' |
|
channels_per_group = num_channels // groups |
|
x = paddle.reshape( |
|
x=x, shape=[batch_size, groups, channels_per_group, height, width]) |
|
x = paddle.transpose(x=x, perm=[0, 2, 1, 3, 4]) |
|
x = paddle.reshape(x=x, shape=[batch_size, num_channels, height, width]) |
|
return x |
|
|
|
|
|
def get_static_shape(tensor): |
|
shape = paddle.shape(tensor) |
|
shape.stop_gradient = True |
|
return shape
|
|
|