You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
146 lines
4.7 KiB
146 lines
4.7 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
|
# |
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
# you may not use this file except in compliance with the License. |
|
# You may obtain a copy of the License at |
|
# |
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
# |
|
# Unless required by applicable law or agreed to in writing, software |
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
# See the License for the specific language governing permissions and |
|
# limitations under the License. |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
|
|
def get_color(idx): |
|
idx = idx * 3 |
|
color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255) |
|
return color |
|
|
|
|
|
def plot_tracking(image, |
|
tlwhs, |
|
obj_ids, |
|
scores=None, |
|
frame_id=0, |
|
fps=0., |
|
ids2names=[]): |
|
im = np.ascontiguousarray(np.copy(image)) |
|
im_h, im_w = im.shape[:2] |
|
|
|
top_view = np.zeros([im_w, im_w, 3], dtype=np.uint8) + 255 |
|
|
|
text_scale = max(1, image.shape[1] / 1600.) |
|
text_thickness = 2 |
|
line_thickness = max(1, int(image.shape[1] / 500.)) |
|
|
|
radius = max(5, int(im_w / 140.)) |
|
cv2.putText( |
|
im, |
|
'frame: %d fps: %.2f num: %d' % (frame_id, fps, len(tlwhs)), |
|
(0, int(15 * text_scale)), |
|
cv2.FONT_HERSHEY_PLAIN, |
|
text_scale, (0, 0, 255), |
|
thickness=2) |
|
|
|
for i, tlwh in enumerate(tlwhs): |
|
x1, y1, w, h = tlwh |
|
intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h))) |
|
obj_id = int(obj_ids[i]) |
|
id_text = '{}'.format(int(obj_id)) |
|
if ids2names != []: |
|
assert len( |
|
ids2names) == 1, "plot_tracking only supports single classes." |
|
id_text = '{}_'.format(ids2names[0]) + id_text |
|
_line_thickness = 1 if obj_id <= 0 else line_thickness |
|
color = get_color(abs(obj_id)) |
|
cv2.rectangle( |
|
im, intbox[0:2], intbox[2:4], color=color, thickness=line_thickness) |
|
cv2.putText( |
|
im, |
|
id_text, (intbox[0], intbox[1] - 10), |
|
cv2.FONT_HERSHEY_PLAIN, |
|
text_scale, (0, 0, 255), |
|
thickness=text_thickness) |
|
|
|
if scores is not None: |
|
text = '{:.2f}'.format(float(scores[i])) |
|
cv2.putText( |
|
im, |
|
text, (intbox[0], intbox[1] + 10), |
|
cv2.FONT_HERSHEY_PLAIN, |
|
text_scale, (0, 255, 255), |
|
thickness=text_thickness) |
|
return im |
|
|
|
|
|
def plot_tracking_dict(image, |
|
num_classes, |
|
tlwhs_dict, |
|
obj_ids_dict, |
|
scores_dict, |
|
frame_id=0, |
|
fps=0., |
|
ids2names=[]): |
|
im = np.ascontiguousarray(np.copy(image)) |
|
im_h, im_w = im.shape[:2] |
|
|
|
top_view = np.zeros([im_w, im_w, 3], dtype=np.uint8) + 255 |
|
|
|
text_scale = max(1, image.shape[1] / 1600.) |
|
text_thickness = 2 |
|
line_thickness = max(1, int(image.shape[1] / 500.)) |
|
|
|
radius = max(5, int(im_w / 140.)) |
|
|
|
for cls_id in range(num_classes): |
|
tlwhs = tlwhs_dict[cls_id] |
|
obj_ids = obj_ids_dict[cls_id] |
|
scores = scores_dict[cls_id] |
|
cv2.putText( |
|
im, |
|
'frame: %d fps: %.2f num: %d' % (frame_id, fps, len(tlwhs)), |
|
(0, int(15 * text_scale)), |
|
cv2.FONT_HERSHEY_PLAIN, |
|
text_scale, (0, 0, 255), |
|
thickness=2) |
|
|
|
for i, tlwh in enumerate(tlwhs): |
|
x1, y1, w, h = tlwh |
|
intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h))) |
|
obj_id = int(obj_ids[i]) |
|
|
|
id_text = '{}'.format(int(obj_id)) |
|
if ids2names != []: |
|
id_text = '{}_{}'.format(ids2names[cls_id], id_text) |
|
else: |
|
id_text = 'class{}_{}'.format(cls_id, id_text) |
|
|
|
_line_thickness = 1 if obj_id <= 0 else line_thickness |
|
color = get_color(abs(obj_id)) |
|
cv2.rectangle( |
|
im, |
|
intbox[0:2], |
|
intbox[2:4], |
|
color=color, |
|
thickness=line_thickness) |
|
cv2.putText( |
|
im, |
|
id_text, (intbox[0], intbox[1] - 10), |
|
cv2.FONT_HERSHEY_PLAIN, |
|
text_scale, (0, 0, 255), |
|
thickness=text_thickness) |
|
|
|
if scores is not None: |
|
text = '{:.2f}'.format(float(scores[i])) |
|
cv2.putText( |
|
im, |
|
text, (intbox[0], intbox[1] + 10), |
|
cv2.FONT_HERSHEY_PLAIN, |
|
text_scale, (0, 255, 255), |
|
thickness=text_thickness) |
|
return im
|
|
|